• Title/Summary/Keyword: 승산알고리즘

Search Result 57, Processing Time 0.02 seconds

A Study of the Modulus Multiplier Design for Speed up Throughput in the Public-key Cryptosystem (공개키 암호시스템의 처리속도향상을 위한 모듈러 승산기 설계에 관한 연구)

  • 이선근;김환용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.51-57
    • /
    • 2003
  • The development of the communication network and the other network method can generate serious social problems. So, it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security field such as hacking, cracking. The way to preserve security from hacker or cracker without developing new cryptographic algorithm is keeping the state of anti-cryptanalysis in a prescribed time by means of extending key-length. In this paper, we proposed M3 algorithm for the reduced processing time in the montgomery multiplication part. Proposed M3 algorithm using the matrix function M(.) and lookup table perform optionally montgomery multiplication with repeated operation. In this result, modified repeated operation part produce 30% processing rate than existed montgomery multiplicator. The proposed montgomery multiplication structured unit array method in carry generated part and variable length multiplication for eliminating bottle neck effect with the RSA cryptosystem. Therefore, this proposed montgomery multiplier enforce the real time processing and prevent outer cracking.

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Construction of High-Speed Parallel Multiplier on Finite Fields GF(3m) (유한체 GF(3m)상의 고속 병렬 승산기의 구성)

  • Choi, Yong-Seok;Park, Seung-Yong;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.510-520
    • /
    • 2011
  • In this paper, we propose a new multiplication algorithm for primitive polynomial with all 1 of coefficient in case that m is odd and even on finite fields $GF(3^m)$, and compose the multiplier with parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $(m+1)^2$ same basic cells that have a mod(3) addition gate and a mod(3) multiplication gate. Since the basic cells have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $T_A+T_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

(Multiplexer-Based Away Multipliers over $GF(2^m))$ (멀티플렉서를 이용한 $GF(2^m)$상의 승산기)

  • Hwang, Jong-Hak;Park, Seung-Yong;Sin, Bu-Sik;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.35-41
    • /
    • 2000
  • In this paper, the multiplicative algorithm of two polynomals over finite field GF(2$^{m}$ ) is presented. The proposed algorithm permits an efficient realization of the parallel multiplication using iterative arrays. At the same time, it permits high-speed operation. This multiplier is consisted of three operation unit: multiplicative operation unit, the modular operation unit, the primitive irreducible operation unit. The multiplicative operation unit is composed of AND gate, X-OR gate and multiplexer. The modular operation unit is constructed by AND gate, X-OR gate. Also, an efficient pipeline form of the proposed multiplication scheme is introduced. All multipliers obtained have low circuit complexity permitting high-speed operation and interconnection of the cells are regular, well-suited for VLSI realization.

  • PDF

An Architecture for Two's Complement Serial-Parallel Multiplication (2의 보수 직병렬 승산을 위한 논리구조)

  • Mo, Sang-Man;Yoon, Yong-Ho
    • ETRI Journal
    • /
    • v.13 no.2
    • /
    • pp.9-14
    • /
    • 1991
  • 직병렬 승산기는 피승수와 승수중 어느 하나가 병렬로 입력되고 또다른 수는 직렬로 입력되는 구조를 가지며, 디지틀 신호처리, 온라인 응용, 특수 목적용 계산 시스팀 등에서 많이 이용되고 있다. 본 논문에서는 2 의 보수를 위한 직병렬 승산기의 논리구조를 제안한다. 제안한 2의 보수 직병렬 승산기는 효과적인 2의 보수 직병렬 승산 알고리즘에 의해서 모든 데이터 신호가 국부적 연결만으로 구성되며, 간단하고 모듈화된 하드웨어의 구성으로 쉽게 설계할 수 있다. 이 승산기는 무부호 승산과 마찬가지로 2n+1 사이클만을 필요로 하고, 각 사이클 시간은 무부호 직병렬 승산에 비해서 2의 보수 승산을 위한 XOR 게이트의 지연시간이 추가된 것뿐이다. 또한, 제안한 2의 보수 직병렬 승산기는 VLSI 구현에 매우 적합한 구조를 지닌다.

  • PDF

Multiplication Free Adaptive Digital Filter (승산을 요하지 않는 적응 디지탈 필터)

  • Park, Tae-Ho;Cha, Il-Hwan;Yun, Dae-Hui
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.15-18
    • /
    • 1987
  • Multiplication free adaptive digital filtering algorithms are discussed. The proposed. The proposed algorithm uses delta modulation digital filter and the relevant filter weights are updated using the SIGN algorithms to realize an adaptive digital filter without multiplication operations. It is shown that the resulting algorithm can be implemented using simple up/down counting operations. The convergence characteristics of the proposed adaptive digital filtering algorithm and .others are investigated for a system identification problem.

  • PDF

The Design of GF(2m) Parallel Multiplier using data select methodology (데이터 선택방식에 의한 GF(2m)상의 병렬 승산기 설계)

  • Byun, Gi-Young;Choi, Young-Hee;Kim, Heong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.102-109
    • /
    • 2003
  • In this paper, the new multiplicative algorithm using standard basis over GF(2m) is proposed. The multiplicative process is simplified by data select method in proposed algorithm. After multiplicative operation, the terms of degree greater than m can be expressed as a polynomial of standard basis with degree less than m by irreducible polynomial. For circuit implementation of proposed algorithm, we design the circuit using multiplexer and show the example over GF(24). The proposed architectures are regular and simple extension for m. Also, the comparison result show that the proposed architecture is more simple than privious multipliers. Therefore, it well suited for VLSI realization and application other operation circuits.

Design of digit-serial multiplier based on ECC(Elliptic Curve Cryptography) algorithm (타원곡선 암호 알고리즘에 기반한 digit-serial 승산기 설계)

  • 위사흔;이광엽
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.140-143
    • /
    • 2000
  • 소형화와 안전성에서 보다 더 진보된 ECC( Elliptic Curve Cryptography) 암호화 알고리즘의 하드웨어적 구현을 제안한다. Basis는 VLSI 구현에 적합한 standard basis이며 m=193 ECC 승산기 회로를 설계하였다. Bit-Parallel 구조를 바탕으로 Digit-Serial/Bit-Parallel 방법으로 구현하였다. 제안된 구조는 VHDL 및 SYNOPSYS로 검증되었다.

  • PDF

Design of 1-D DCT processor using a new efficient computation sharing multiplier (새로운 연산 공유 승산기를 이용한 1차원 DCT 프로세서의 설계)

  • Lee, Tae-Wook;Cho, Sang-Bock
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.347-356
    • /
    • 2003
  • The OCT algorithm needs efficient hardware architecture to compute inner product. The conventional methods have large hardware complexity. Because of this reason. a computation sharing multiplier was proposed for implementing inner product. However, the existing multiplier has inefficient hardware architecture in precomputer and select units. Therefore it degrades the performance of the multiplier. In this paper, we proposed a new efficient computation sharing multiplier and applied it to implementation of 1-D DCT processor. The comparison results show that the new multiplier is more efficient than an old one when hardware architectures and logic synthesis results were compared. The designed 1-D DCT processor by using the proposed multiplier is more high performance than typical design methods.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.