• Title/Summary/Keyword: 수학적 활동

Search Result 919, Processing Time 0.033 seconds

A Study on the Effect of Montessori-Education Program on Preschooler Multiple Intelligences (몬테소리 교육프로그램이 유아의 다중지능에 미치는 효과 연구)

  • Kim, Nam Su;Kwon, Eun Ju
    • Korean Journal of Childcare and Education
    • /
    • v.1 no.1
    • /
    • pp.59-81
    • /
    • 2005
  • The purpose of this study was to examine how Montessori-education program, one of different early-childhood education programs, was tied into the multiple intelligences of young children and how Montessori education program affected their multiple intelligences. It's basically meant to determine the efficiency of Montessori-education program. The major findings of the study were as follows: First, the Montessori-education program turned out to have a favorable effect on the development of the young children's multiple intelligences. Second, among the subfactors of multiple intelligences, the musical and bodily-kinesthetic intelligences of the preschoolers were little affected by the Montessori-education program, but that had a good impact on their logical-mathematical, spatial, linguistic, interpersonal, intrapersonal, and naturalist intelligences. The above-mentioned findings suggested that Montessori-education program was one of efficient teaching methods to step up the development of young children's multiple intelligences.

  • PDF

Design and evaluation of STEAM Teaching Material which uses a sensor in a smart device (스마트기기 센서를 활용한 STEAM 수업자료 설계 및 평가)

  • Yang, Yun-jeong;Kim, Eui-jeong;Kim, Chang-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.271-274
    • /
    • 2013
  • Considering the recent trend highlighting the importance of STEAM education, the purpose of this study is to develop scientific research activities and STEAM technology material using the smart device sensor. Drawing a picture on a map with GPS drawing application which contains elements such as IT, geographic information, sports and arts, we intent not just to install a smartphone application but also to get synergic effects and help with real cartography and geographic classes which are not experienced in the middle school curriculum, by using the functions of a smart device. Through the development of STEAM teaching material, we intended to provide a clear direction towards advancement by developing creative teaching data and teaching models which encourage students to improve their interest and creativity in science, technology, engineering, art, and mathematics.

  • PDF

Development of cloud-based multiplication table practice application using data visualization (데이터 시각화를 적용한 클라우드 기반 곱셈구구 연습 애플리케이션 개발)

  • Kang, Seol-Joo;Park, Phanwoo;Bae, Youngkwon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.285-293
    • /
    • 2022
  • The COVID-19 outbreak, which took longer than expected, caused considerable damage to students' basic academic ability in mathematics. In this paper, a multiplication table practice application that can help students improve their basic multiplication arithmetic skills has been developed based on a cloud-service. The performance of the application was improved by integrating the Flutter framework, Google Cloud, and Google Sheets. As a result of applying this application to 72 6th graders in elementary schools located in K Metropolitan City, for one week. students' spending time required for solving multiplication table problems was reduced by more than 28% compared to the initial period, while students' learning data was able to be accurately collected without errors. It is hoped that the development case conducted through the Flutter framework in this study can lead to the development of other educational learning applications.

Scientific Practices Manifested in Science Textbooks: Middle School Science and High School Integrated Science Textbooks for the 2015 Science Curriculum (과학 교과서에 제시된 과학실천의 빈도와 수준 -2015 개정 교육과정에 따른 중학교 과학 및 통합과학-)

  • Kang, Nam-Hwa;Lee, Hye Rim;Lee, Sangmin
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.4
    • /
    • pp.417-428
    • /
    • 2022
  • This study analyzed the frequency and level of scientific practices presented in secondary science textbooks. A total of 1,378 student activities presented in 14 middle school science textbooks and 5 high school integrated science textbooks were analyzed, using the definition and level of scientific practice suggested in the NGSS. Findings show that most student activities focus on three practices. Compared to the textbooks for the previous science curriculum, the practice of 'obtaining, evaluating, and communicating information' was more emphasized, reflecting societal changes due to ICT development. However, the practice of 'asking a question', which can be an important element of student-led science learning, was still rarely found in textbooks, and 'developing and using models', 'using math and computational thinking' and 'arguing based on evidence' were not addressed much. The practices were mostly elementary school level except for the practice of 'constructing explanations'. Such repeated exposures to a few and low level of practices mean that many future citizens would be led to a naïve understanding of science. The findings imply that it is necessary to emphasize various practices tailored to the level of students. In the upcoming revision of the science curriculum, it is necessary to provide the definition of practices that are not currently specified and the expected level of each practice so that the curriculum can provide sufficient guidance for textbook writing. These efforts should be supported by benchmarking of overseas science curriculum and research that explore students' ability and teachers' understanding of scientific practices.

A Study on Construction of Multiplication Knowledge with Low Reasoning Ability (추론 능력이 열등한 초등학교 2학년 학생의 곱셈 지식 구성 능력에 관한 연구)

  • Lee, So-Min;Kim, Jin-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.1
    • /
    • pp.47-70
    • /
    • 2009
  • The purpose of this research was to confirm one of constructivists' assumptions that even children 조o are with low reasoning ability can make reflective abstracting ability and cognitive structures by this ability can make generation ability of new knowledge by themselves. To investigate the assumption, learner-centered instruction were implemented to 2nd grade classroom located in Suseong Gu, DaeGu City and with lesson plans which initially were developed by Burns and corrected by the researchers. Recordings videoed using 2 video cameras, observations, instructions, children's activity worksheets, instruction journals were analyzed using multiple tests for qualitative analysis. Some conclusions are drawn from the results. First, even children with low reasoning ability can construct mathematical knowledge on multiplication in their own. ways, Thus, teachers should not compel them to learn a learning lesson's goals which is demanded in traditional instruction, with having belief they have reasoning ability. Second, teachers need to have the perspectives of respects out of each child in their classroom and provide some materials which can provoke children's cognitive conflict and promote thinking with the recognition of effectiveness of learner-centered instruction. Third, students try to develop their ability of reflective and therefore establish cognitive structures such as webs, not isolated and fragmental ones.

  • PDF

The Application of Convergence lesson about Private Finance with Life Science subject in Mongolian University (몽골대학에서 개인 금융과 올바른 삶 교과간 융합수업 적용)

  • Natsagdorj, Bayarmaa;Lee, Kuensoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.872-877
    • /
    • 2018
  • STEAM is an acronym for Science, Technology, Engineering, Arts, and Mathematics. It is considered important to equip students with a creative thinking ability and the core competences required in future society, helping them devise new ideas emerging from branches of study. This study is about the convergence of instructional design in private finance for the life sciences, which aims to foster talent through problem-based learning (PBL). Skills like collaboration, creativity, critical thinking, and problem solving are part of any STEAM PBL, and are needed for students to be effective. STEAM projects give students a chance to problem-solve in unique ways, because they are forced to use a variety of methods to solve problems that pop up during these types of activities. The results of this study are as follows. First is the structured process of convergence lessons. Second is the convergence lesson process. Third is the development of problems in the introduction of private finance and the life sciences for a convergence lesson at Dornod University. Learning motivation shows the following results: understanding of learning content (66.6%), effectiveness (63.3%), self-directed learning (59.9%), motivation (63.2%), and confidence (63.3%). To make an effective model, studies applying this instructional design are to be implemented.

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

Suggestion of Computational Thinking-Scientific Inquiry (CT-SI) Model through the Exploration of the Relationship Between Scientific Problem Solving Process and Computational Thinking (과학적 문제해결과정과 컴퓨팅 사고의 관련성 탐색을 통한 컴퓨팅 사고 기반 과학 탐구(CT-SI) 모형의 제안)

  • Hwang, Yohan;Mun, Kongju
    • Journal of Science Education
    • /
    • v.44 no.1
    • /
    • pp.92-111
    • /
    • 2020
  • The 2015 revised science curriculum and NGSS (Next Generation Science Standard) suggest computational thinking as an inquiry skill or competency. Particularly, concern in computational thinking has increased since the Ministry of Education has required software education since 2014. However, there is still insufficient discussion on how to integrate computational thinking in science education. Therefore, this study aims to prepare a way to integrate computational thinking elements into scientific inquiry by analyzing the related literature. In order to achieve this goal, we summarized various definitions of the elements of computational thinking and analyzed general problem solving process and scientific inquiry process to develop and suggest the model. We also considered integrated problem solving cases from the computer science field and summarized the elements of the Computational Thinking-Scientific Inquiry (CT-SI) model. We asked scientists to explain their research process based on the elements. Based on these explanations from the scientists, we developed 'Problem-finding' CT-SI model and 'Problem solving' CT-SI model. These two models were reviewed by scientists. 'Problem-finding' model is relevant for selecting information and analyzing problems in the theoretical research. 'Problem solving' is suitable for engineering problem solving process using a general research process and engineering design. In addition, two teachers evaluated whether these models could be used in the secondary school curriculum. The models we developed in this study linked with the scientific inquiry and this will help enhance the practices of 'collecting, analyzing and interpreting data,' 'use of mathematical thinking and computer' suggested in the 2015 revised curriculum.

A Study on the Development Direction of Reading Education in the 2015 Revised Curriculum (2015 개정 교육과정에 따른 독서교육의 발전 방향 모색 - 교과서 수록 읽기자료를 중심으로 -)

  • Choi, Young-im
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.4
    • /
    • pp.429-448
    • /
    • 2017
  • The purpose of this study is to present the development direction of future reading education by examining the characteristics of reading materials within the high school textbook developed as the 2015 revised curriculum. For this purpose, reading materials of high school textbooks were analyzed in Korean language, mathematics, English, integrated science, and integrated social studies. The analysis criteria of reading materials were subject type, purpose, and student activities. As a result of the study, reading materials on various themes such as humanity, liberty, culture, environment, and district were presented in the integrated society and integrated science textbook of the 2015 revised curriculum. In particular, the Korean language curriculum was composed of a unit called "reading one book in one semester". However, most reading materials have no guidance on reading effective or reading direction, and lack of reading materials and information for extended reading. The reader's reading of the textbook was found to be simply supplementing the learning content of each unit or presenting fragmentary cues for conceptual purposes. This suggests that there is a lack of awareness of students' interest in reading, internalization of reading, and extension of reading. In this paper, we suggest supplementary materials of reading materials for expanding the high school textbooks, and explore the developmental relationship between textbooks and reading education through suggestions on aspects of textbook composition and teaching methods.

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.