• Title/Summary/Keyword: 수학적 창의성

Search Result 258, Processing Time 0.028 seconds

창의적 수학문제해결력 검사도구의 요소

  • Yu, Yun-Jae
    • Communications of Mathematical Education
    • /
    • v.17
    • /
    • pp.159-168
    • /
    • 2003
  • 본 연구는 창의적 수학문제해결력의 검사도구의 요소들을 제시하고 있다. 수학적 창의성을 과정적 관점에서 출발하여 수학적 창의성을 창의적 수학문제제해결과 동일시하고 그에 따른 검사도구의 기본요소들을 Polya의 문제해결기법에서 나타나는 메타인지적 전략과 수학적 마인드를 검사하는 요소들로 구성하였다.

  • PDF

Analysis of Research Trends in Mathematical Creativity Education (수학적 창의성 교육에 관한 연구 동향 분석)

  • Choi, Byoung-Hoon;Pang, Jeong-Suk
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.1
    • /
    • pp.197-215
    • /
    • 2012
  • The purpose of this study was to analyze the research trends of 114 papers about mathematical creativity published in domestic journals from 1997 to 2011 with regard to the years, objects, subjects, and methods of such research. The research of mathematical creativity education has been studied since 2000. The frequent objects in the research were non-human, middle and high school students, elementary students, gifted students, teachers (in-service and pre-service), and kindergarteners in order. The research on the teaching methods of mathematical creativity, the general study of mathematical creativity, or the measurement and the evaluation of mathematical creativity was active, whereas that of dealing with curricula and textbooks was rare. The qualitative research method was more frequently used than the quantitative research one. The mixed research method was hardly used. On the basis of these results, this paper shows how mathematical creativity was studied until now and gives some implications for the future research direction in mathematical creativity.

수학적 창의성 신장을 위한 교사의 발문 특성 연구

  • Han, Jeong-Min;Park, Man-Gu
    • Proceedings of the Korea Society of Elementary Mathematics Education
    • /
    • 2010.08a
    • /
    • pp.219-235
    • /
    • 2010
  • 학습자들이 미래 사회에 능동적으로 대처하기 위해서는 기존의 지식을 축적, 활용하는 것뿐만 아니라, 새로운 행동 양식을 개발하고 환경의 변화에 적절히 대응해 나갈 수 있는 능동적인 자세와 상응하는 창의적인 힘을 키우기 위해 '창의성 신장'이 강조되고 있다. 선행연구에 따르면 교사의 발문이 학생의 수학 학업성취도, 수학적 사고력향상, 수학에 대한 관심과 흥미에 긍정적인 영향을 주고 있음을 시사하고 있지만, 수학교육에서 창의성 신장을 위한 교사의 발문에 관련한 구체적인 연구는 미흡한 실정이다. 따라서 2007 개정 교육과정에서 강조하는 수학적 의사소통능력과 창의성, 수학적 사고력 신장에 기여하고 학생들의 수학과 학업성취도 뿐만 아니라 정의적 영역(흥미, 태도, 호기심 등)의 향상을 도모할 수 있는 교사 발문의 특성 연구가 필요하다. 본 연구는 도형영역 수업에서 교사의 발문 특성을 분석하고, 수업에서 사용되는 자료와 수업에서 학생들의 수학적 창의성 신장을 효과적으로 도울 수 있는 교사 발문의 특성을 연구하는 것을 목적으로 하였다. 본 연구를 위하여 우리나라 2007개정 교육과정 수학과 4학년 1학기 도형 영역 관련 단원인 삼각형을 주제로 교과서에서 제시한 발문 내용을 분석하고, 실제 교수-학습 과정에서의 교사 발문의 실태를 알아보고자 제주교육인터넷방송국에 탑재되어 있는 7차 교육과정 4학년 1학기, 2학기 도형 관련 3개의 수업을 관찰 및 분석하였다. 이를 통해 수학적 창의성 신장을 위한 교사 발문의 특성을 수학적 창의성의 하위요소별로 나누어 분석하였다. 학생의 창의성 신장을 위해서 교사는 학생들이 다양하게 사고할 수 있도록 자극할 수 있는 발문을 준비하고, 수업 진행시 하나의 발문에 대해 다수의 반응을 유도하고, 학생의 응답에 대해 단순한 '맞다, 틀리다'의 판단을 내리기 보다는 그 근거를 설명할 수 있는 기회를 마련해 주어 학생이 수학 수업에 흥미를 갖고 스스로 참여할 수 있도록 유도해야 함을 제안하였다.

  • PDF

The Concept of Creativity and Its Enhancement in Mathematics Education (수학교육에서 창의성의 개념 및 신장 방안)

  • Park, Man-Goo
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.803-822
    • /
    • 2009
  • Creativity is emerging as one of the key components in every areas. In mathematics education, creativity or mathematical creativity is emphasized even though the definition of the term is inconsistence among every research. The purpose of this research was to identify the nature of mathematical creativity and provide the ways of strengthening it in the mathematics classroom. For this, students' mathematical strategies and problems in the elementary mathematics textbook were analyzed. The results showed that mathematically gifted students used a limited strategies and the problems in the textbooks were too simple to stimulate students' mathematical creativity. For the enhancement of students' mathematical creativity, we need to develop mathematically rich tasks and refine teacher education programs.

  • PDF

The Effects of Non-intellective Factors and Process variables of the Gifted Middle School Students on their Mathematical Creativity (중학생 영재의 비지적특성과 가정의 과정변인이 수학적 창의성에 미치는 영향)

  • Song, Kyung-Ae
    • Journal of Gifted/Talented Education
    • /
    • v.15 no.2
    • /
    • pp.127-151
    • /
    • 2005
  • The purpose of this study is to examine the relationships between process variables, personality traits, intrinsic/extrinsic motivation and their mathematical creativity and how much these factors affect this creativity. These results show the major factor in mathematical creativity as being the gender difference between the gifted male and female middle school students. This also suggests that the education and living guidance of both gifted male and female students should take a different direction in relation to their gender differences in middle schools. In conclusion, all of the normal intellective and non-intellective factors, as well as home process variables, are the basic major data concerned with the effects of mathematical creativity. So, it is with all of this research that the proof for researching synthetically via a new creative research model can be offered.

A case study on supporting mathematical modeling activities through the development of group creativity (집단 창의성 발현을 통한 수학적 모델링 활동 지원 사례 연구)

  • Jung, Hye-Yun;Lee, Kyeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.2
    • /
    • pp.133-161
    • /
    • 2019
  • In this paper, we analyzed the case of supporting the mathematical modeling activities through the group creativity in everyday class of 9th grade. The details are as follows. First, through the theoretical review, the meaning of group creativity according to sociocultural perspective and the sociocultural characteristics of mathematical modeling were confirmed. Second, we experimented in a classroom consisting of 5 groups of 4 students, and conducted a case study focusing on a well developed group of group creativity. The results are as follows. First, group creativity with various types of interaction and creativity synergy was observed at each stage of mathematical modeling. According to the stag e of mathematical modeling and the type of interaction, different creative synergy was developed. Second, the developed group creativity supported each step of mathematical modeling. According to the stage of mathematical modeling and the type of interaction, group creativity supported mathematical modeling activities in different directions.

자리바꾸기 문제를 활용한 수학적 창의성의 발현 과정 연구

  • Kim, Bu-Yun;Lee, Ji-Seong
    • Communications of Mathematical Education
    • /
    • v.19 no.2 s.22
    • /
    • pp.327-344
    • /
    • 2005
  • 솔리테르(solitaire) 중 간단한 게임인 자리바꾸기 문제에 대해 학습자로 하여금 다양한 해결방법을 산출 하도록 한 후, 그 과정에서 학생들의 수학적 창의성의 발현 과정을 추적해 본다. 제시한 문제 해결 과제에 대한 학습자들의 반응과 해답을 분석함으로써 수학적 창의성에서의 인지적 구성요소인 확산성, 유창성, 논리성, 유연성, 독창성과 정의적 구성요소에 해당하는 적극성, 독자성, 집중성, 정밀성 등이 어떻게 나타나고 있는가를 살펴본다. 또한 그렇게 함으로써 각 구성요소의 의미와 특성을 규명하고자 하며, 나아가 이들 구성요소를 판별할 수 있는 방안에 대한 기초 자료를 제공하고자 한다.

  • PDF

Reanalysis of Realistic Mathematics Education Perspective in Relation to Cultivation of Mathematical Creativity (현실적 수학교육 이론의 재음미 : 수학적 창의성 교육의 관점에서)

  • Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.1
    • /
    • pp.47-62
    • /
    • 2016
  • Cultivating mathematical creativity is one of the aims in the recently revised mathematics curricular. However, there have been lack of researches on how to nurture mathematical creativity for ordinary students. Perspective of Realistic Mathematics Education(RME), which pursues education of creative person as the ultimate goal of mathematics education, could be useful for developing principles and methods for cultivating mathematical creativity. This study reanalyzes RME from the points of view in mathematical creativity education. Major findings are followed. First, students should have opportunities for mathematical creation through mathematization, while seeking and creating certainty. Second, it is vital to begin with realistic contexts to guarantee mathematical creation by students, in which students can imagine or think. Third, students can create mathematics in realistic contexts by modelling. Fourth, students create the meaning of 'model of(MO)', which models the given context, the meaning of 'model for(MF)', which models formal mathematics. Then, students create MOs and MFs that are equivalent to the intial MO and MF given by textbook or teacher. Flexibility, fluency, and novelty could be employed to evaluate the MOs and the MFs created by students. Fifth, cultivation of mathematical creativity can be supported from development of local instructional theories by thought experiment, its application, and reflection. In conclusion, to employ the education model of cultivating mathematical creativity by RME drawn in this study could be reasonable when design mathematics lessons as well as mathematics curriculum to include mathematical creativity as one of goals.

An Analysis of Teacher Questioning Focused on Mathematical Creativity (수학적 창의성 관점에서 본 교사의 발문 분석)

  • Han, Jung-Min;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.865-884
    • /
    • 2010
  • The purpose of this research was to analyze the characteristics of teachers' questionings in the geometry field and suggest the characteristics of teacher questioning to enhance students' mathematical creativity. Teacher questioning plays a role to students' mathematical achievements, mathematical thinking, and their attitudes toward mathematics. However, there has been little research on the roles of teacher questioning on students' mathematical creativity. In this research, researchers analyzed teachers' questions concerning the concepts of triangles in the geometric areas of 4th grade Korean revised 2007 mathematics textbooks. We also analyzed teachers' questionings in the three lessons provided by the Jeju Educational Internet Broadcasting System. We classified and analyzed teachers' questionings by the sub-factors of creativity. The results showed that the teachers did not use the questionings that appropriately enhances students' mathematical creativity. We suggested that teachers need to be prepared to ask questions such as stimulating students' various mathematical thinking, encouraging many possible responses, and not responding with yes/no. Instead, teachers need to encourage students to explain the reasons of their responses and to take part in learning activities with interest.

  • PDF

수학 영재 판별을 위한 수학 창의적 문제해결력 검사 개발

  • Jo Seok-Hui;Hwang Dong-Ju
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2006.04a
    • /
    • pp.211-226
    • /
    • 2006
  • 이 연구는 수학 창의적 문제해결력을 바탕으로 수학 영재를 판별하기 위해서 수학 창의적 문제해결력 검사를 개발하고, 유창성만으로 수학 창의성을 평가한 이 검사 방법의 신뢰도와 타당도를 검증하는데 있다. 10개의 개방적인 수학 문제를 개발한 바, 수학적으로는 직관적 통찰력, 정보 조직력, 추론능력, 일반화 및 적용력, 반성적 사고력을 요구하는 문제들이다. 이 10문항을 영재교육기관에 입학하고자 지원한 초등학교 5학년 2,2029명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 측정했다. 학생들의 반응은 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPTS 로 분석했다. 문항반응 분석결과, 이 검사는 창의성을 유창성만으로 측정할 때도 영재판별 검사로서 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 덜 정의되고, 덜 구조화되고, 신선한 문제가 영재교육 프로그램에 지원한 학생들의 수학 창의성을 측정하는데 좋은 문제임을 확인할 수 있었다. 또한 이 검사는 남학생이 여학생보다 수학 창의적 문제해결력이 우수하며, 영재교육원에 지원한 학생들이 수학영재학급에 지원한 학생들보다 더 우수함을 확인해 주었다.

  • PDF