DOI QR코드

DOI QR Code

A case study on supporting mathematical modeling activities through the development of group creativity

집단 창의성 발현을 통한 수학적 모델링 활동 지원 사례 연구

  • Received : 2019.05.08
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

In this paper, we analyzed the case of supporting the mathematical modeling activities through the group creativity in everyday class of 9th grade. The details are as follows. First, through the theoretical review, the meaning of group creativity according to sociocultural perspective and the sociocultural characteristics of mathematical modeling were confirmed. Second, we experimented in a classroom consisting of 5 groups of 4 students, and conducted a case study focusing on a well developed group of group creativity. The results are as follows. First, group creativity with various types of interaction and creativity synergy was observed at each stage of mathematical modeling. According to the stag e of mathematical modeling and the type of interaction, different creative synergy was developed. Second, the developed group creativity supported each step of mathematical modeling. According to the stage of mathematical modeling and the type of interaction, group creativity supported mathematical modeling activities in different directions.

본 연구에서는 일반 중학교 3학년 학생들의 일상적인 수업에서 집단 창의성 발현을 통해 수학적 모델링 활동을 지원한 사례를 분석하였다. 이를 위해 첫째, 선행연구 분석을 통해 사회문화적 관점에 따른 집단 창의성의 의미와 수학적 모델링의 사회문화적 특성을 확인하였다. 둘째, 4명씩 5모둠으로 구성된 한 학급에서 실험을 수행한 뒤, 집단 창의성 발현이 잘 이루어진 한 모둠의 사례에 초점을 둔 사례 연구를 수행하였다. 그 결과, 첫째, 수학적 모델링의 각 단계별로 다양한 유형의 상호작용이 나타났으며, 수학적 모델링의 단계와 발생한 상호작용의 유형에 따라 다양한 창의적 시너지가 관찰되었다. 즉, 수학적 모델링 활동에서 집단 창의성 발현이 관찰되었다. 둘째, 발현된 집단 창의성은 수학적 모델링의 각 단계의 수행을 지원하였다. 이때, 수학적 모델링의 단계와 발생한 상호작용에 따라 각기 다른 방향으로 수학적 모델링 활동을 지원하였다.

Keywords

References

  1. 김부미(2018). 모바일, 온/오프라인 연계수학 학습에서 집단창의성 발현을 위한 과제 특성. 수학교육학논총, 52, 159-161.
  2. 김선연(2017). 집단 협력학습에서 시너지의 심층적 개념 분석. 교육공학연구, 33(1), 75-104.
  3. 박만구, 김진호(2006). 학습자 중심의 수학 수업에서 교사들의 발문 분석. 한국학교수학회논문집, 9(4), 425-457.
  4. 박진형(2017). 수학적 모델링 활동에 의한 창의적 사고 촉진 사례 연구. 수학교육학연구, 27(1), 69-88.
  5. 성지현, 이종희(2017). 수학영재의 집단창의성 발현 모델 개발. 수학교육학연구, 27(3), 557-580.
  6. 왕치현, 문성란, 이현열(2015). 창의성 개념의 심리학적 고찰을 통한 창의성교육 연구. 독어교육, 63(63), 279-302.
  7. 우정호, 정영옥, 박경미, 이경화, 김남희, 나귀수, 임재훈(2014). 수학교육학 연구방법론. 서울: 경문사.
  8. 이경화(2016). 현실적 수학교육 이론의 재음미: 수학적 창의성 교육의 관점에서. 수학교육학연구, 26(1), 47-62.
  9. 정혜윤, 이경화(2018). 수학적 모델링에서의 집단창의성 발현사례. 수학교육, 57(4), 371-391.
  10. 정혜윤, 이경화(2019). 집단창의성 발현을 위한 수학적 모델링 수업의 설계. 수학교육학연구, 29(1), 157-188.
  11. 정혜윤, 이경화, 백도현, 정진호, 임경석(2018). 수학적 모델링 관점에 의한 <수학과제 탐구> 과목용 과제의 설계. 학교수학, 20(1), 149-169.
  12. 조무정, 진석언(2016). 초등학교 과학 영재학생의 집단 창의성 발현과정 경험에 대한 현상학적 연구. 창의력교육연구, 16(2), 35-59.
  13. 최경아(2017). 수학 교과 역량 관점에서의 수학적 모델링에 관한 선행연구 탐색. 한국학교수학회논문집, 20(2), 187-210.
  14. Blomhoj, M., & Jensen, T. H. (2007). What's all the fuss about competencies?. In Modelling and applications in mathematics education (pp. 45-56). Springer, Boston, MA.
  15. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of Mathematical Modelling and Application, 1(1), 45-58.
  16. Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Research, 23(7), 13-20. https://doi.org/10.3102/0013189X023002013
  17. Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of mind in mathematics education. Journal for Research in Mathematics Education, 23, 2-33. https://doi.org/10.2307/749161
  18. Creswell, J. W. (2013). 질적 연구방법론 : 다섯 가지 접근 (조흥식, 정선욱, 김진숙, 권지성 역), 서울: 학지사. (원저 2010년 출판).
  19. Creswell, J. W. (2014). 연구방법 : 질적, 양적 혼합적 연구의 설계 (정종진, 김영숙, 성용구, 성장환, 류성림, 박판우, 유승희, 임남숙, 임청환, 허재복 역), 서울: 시그마프레스. (원저 2013년 출판).
  20. Doerr, H. M., & English, L. D. (2003). A modeling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110-136. https://doi.org/10.2307/30034902
  21. English, L. D. (2006). Mathematical modeling in the primary school. Educational Studies in Mathematics, 63(3), 303-323. https://doi.org/10.1007/s10649-005-9013-1
  22. Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM, 38(2), 143-162. https://doi.org/10.1007/BF02655886
  23. Glăveanu, V. P. (2011). How are we creative together? Comparing sociocognitive and sociocultural answers. Theory & Psychology, 21(4), 473-492. https://doi.org/10.1177/0959354310372152
  24. Glăveanu, V. P. (2018). Creativity in perspectives: A sociocultural and critical account. Journal of Constructivist Psychology, 31(2), 118-129. https://doi.org/10.1080/10720537.2016.1271376
  25. Kaiser, G. (2017). The teaching and learning of mathematical modeling. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 267-291). Reston, VA: NCTM.
  26. Kurtzberg, T. R., & Amabile, T. M. (2000-2001). From Guilford to creative synergy: Opening the black box of team-level creativity. Creativity Research Journal, 13, 285-294. https://doi.org/10.1207/S15326934CRJ1334_06
  27. Jeffrey, R., & Craft, A. (2001). The universalization of creativity. In A. Craft, B. Jeffrey, & M. Leibling (Eds.), Creativity in education (pp. 1-13). London: Continuum International Publishing Group.
  28. Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003). Model development sequences. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 35-58). Mahwah: Lawrence Erlbaum Associates.
  29. Lesh, R., & Doerr, H. M. (2012). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobbs, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instruction design (pp. 361-384). Mahwah: Lawrence Erlbaum Associates.
  30. Lesh, R., & English, L. D. (2010). A modeling perspective on students' mathematical reasoning about data. Journal for Research in Mathematics Education, 34(2), 110-136. https://doi.org/10.2307/30034902
  31. Littleton, K., Rojas-Drummond, S., & Meill, D. (2008). Introduction to the special issue: 'Collaborative creativity: Socio-cultual perspectives'. Thinking Skills and Creativity, 3, 175-176. https://doi.org/10.1016/j.tsc.2008.09.004
  32. Luria, S. R., Sriraman, B., & Kaufman, J. C. (2017). Enhancing equity in the classroom by teaching for mathematical creativity. ZDM, 49(7), 1033-1039. https://doi.org/10.1007/s11858-017-0892-2
  33. Milliken, F. J., Bartel, C. A., & Kurtzberg, T. R. (2003). Diversity and creativity in work group: A dynamic perspective on the affective and cognitive processes that link diversity and performance. In P. B. Paulus, & B. A. Nijstad (Eds.), Group creativity: Innovation through collaboration (pp. 32-62). Oxford University Press.
  34. Nemeth, C. J., & Nemeth-Brown, B. (2003). Better than individual? The potential benefit of dissent and diversity for group creativity. In P. B. Paulus, & B. A. Nijstad (Eds.). Group creativity: Innovation through collaboration (pp. 63-84). New York: Oxford University Press.
  35. Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In 3rd Mediterranean conference on mathematical education (pp. 115-124).
  36. Nunez-Oveido, M. C., Clement, J., & Rea-Ramirez, M. A. (2008). Developing complex mental modes in biology through model evolution. In J. J. Clement, & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 173-193). Netherlands: Springer.
  37. Pakeltienė, R., & Ragauskaitė, A. (2017). Creative synergy as a potential factor for the development of social innovations. Research for Rural Development, 2, 174-181.
  38. Palsdottir, G., & Sriraman, B. (2017). Teacher's views on modeling as a creative mathematical activity. In R. Leikin, & B. Sriraman, (Eds.), Creativity and giftedness (pp. 47-55). Switzerland: Springer.
  39. Paulus, P. B. (2000). Groups, teams, and creativity: The creative potential of idea-generating groups. Applied Psychology: An International Review, 49(2), 237-262. https://doi.org/10.1111/1464-0597.00013
  40. Paulus, P. B., & Nijstad, B. A. (2003). Group creativity. In P. B. Paulus, & B. A. Nijstad (Eds.). Group creativity: Innovation through collaboration (pp. 3-11). Oxford University Press.
  41. Redmond, T., Brown, R., & Sheehy, J. (2013). Exploring the relationship between mathematical modelling and classroom discourse. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 349-360). Dordrecht: Springer.
  42. Sullivan, P., Clarke, D., & Clarke, B. (2016). 수학수업 이야기: 수학, 과제, 학습의 삼중주 (이경화, 김동원 역.), 서울: 경문사. (원저 2013년 출판)
  43. Sawyer, R. K. (2012). Explaining creativity: The science of human innovation account. Oxford University Press.
  44. Starko, A. J. (1995). Creativity in the classroom. New York: Longman.
  45. Vorholter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: Empirical verification of theoretical assumption. ZDM, 50(1-2), 343-354. https://doi.org/10.1007/s11858-017-0909-x
  46. Vorholter, K., Kruger, A., & Wendt, L. (2017). Metacognitive modelling competencies in small groups. In Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education. Dublin, Ireland: DCU Institute of Education and ERME.
  47. Zhou, C., & Luo, L. (2012). Group creativity in learning context: Understanding in a socialcultural framework and methodology. Creative Education, 3(4), 392-399. https://doi.org/10.4236/ce.2012.34062

Cited by

  1. 수학적 모델링 관점에 따른 한국과 미국의 중학교 1학년 교과서 기하 영역에 제시된 과제 분석 vol.23, pp.2, 2020, https://doi.org/10.30807/ksms.2020.23.2.001