• 제목/요약/키워드: 수학적 증명

검색결과 348건 처리시간 0.025초

사인의 덧셈정리에 대한 다양한 증명방법 연구

  • 한인기;김태호;유익승;김대의;서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제19권3호
    • /
    • pp.485-502
    • /
    • 2005
  • 한 가지 문제에 대한 다양한 풀이 방법을 탐색하는 것은 수학적 대상의 성질을 발명, 일반화하는 것 뿐만 아니라, 학생들의 지적인 유창성 및 유연성 계발, 수학에 대한 심미적 가치의 함양을 위한 의미 있는 교수학적 경험을 제공할 수 있을 것이다. 본 연구에서는 고등학교 '미분과 적분'에 제시된 사인의 덧셈정리에 대한 다양한 증명 방법을 제시하고, 이를 분석하여 수학교수학적으로 의미로운 시사점을 도출하였다. 이를 통해, 사인의 덧셈정리에 대한 새로운 증명 방법의 탐색, 사인의 덧셈정리의 수학교수학적 활용의 다양한 가능성을 모색할 수 있는 기초자료를 제공할 것이며, 제시된 증명 방법들은 '미분과 적분'의 지도에서 심화학습 자료로도 활용할 수 있을 것이다.

  • PDF

중학생의 경험적 증명과 연역적 증명에 대한 선호 요인 분석 (FACTORS INFLUENCING STUDENTS' PREFERENCES ON EMPIRICAL AND DEDUCTIVE PROOFS IN GEOMETRY)

  • 박귀희;윤현경;조지영;정재훈;권오남
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권2호
    • /
    • pp.325-344
    • /
    • 2010
  • 본 연구는 중학생을 대상으로 학생들이 경험적 증명과 연역적 증명에 대한 선호를 결정할 때 영향을 미치는 요인을 분석하였다. 47명의 중학생에게 설문지를 통하여 자료를 수집하고 응답들을 분석한 결과, 경험적 증명과 연역적 증명의 선호에 영향을 미치는 요인들로 측정, 수학적 원리, 다양한 예를 통한 검증과정에 대한 인식들이 공통적으로 나타났다. 이 요소들은 경험적 증명과 연역적 증명의 선호와 비선호를 결정짓는 요인으로써, 선호하는 증명에 따라 상호 배타적으로 나타나지 않고 증명 선호에 영향을 미쳤다. 이를 통해 본 연구에서는 학생들이 특정 증명을 선호할 때, 한 증명에 대한 비선호와 다른 증명에 대한 선호가 동시에 작용할 수 있다는 결론과 함께 한 증명에 대한 선호요인을 보는 것만으로는 학생들의 증명 선호 이유를 정확히 파악할 수 없을 것이라는 가능성을 제언한다.

중학교 2학년 증명 지도 방법에 관한 연구 -정의와 성질의 구분을 중심으로-

  • 김창일;정승진;윤혜순
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권1호
    • /
    • pp.123-136
    • /
    • 2004
  • 수학이라는 학문 자체가 몇 가지 정의와 공리로부터 논리 법칙을 이용하여 명제나 정의를 유도하고 확장하는 공리적인 성격을 지니고 있기 때문에 그러한 논리 전개의 진위 여부를 판별해주는 증명은 수학에서 아주 중요하다. 특히 중학교 2학년 학생들은 정의와 성질을 이용한 증명을 다루는데 정의와 성질의 역할을 제대로 구분하지 못할 경우 증명 자체가 어려워진다. 학생들을 가르치다 보면 정의와 성질을 구분하지 못하고 증명과정에서 정의와 성질이 어떤 역할을 하는지 제대로 알지 못하는 경우가 종종 있다. 본 연구에서는 정의와 성질의 구분 실태를 조사하고, 정의와 성질의 구분에 어려움이 있는 학생들을 대상으로 증명과정에서 정의와 성질의 역할에 대하여 학생들이 겪는 어려움과 처치과정의 사례 연구를 통하여 분석함으로써 증명 교육의 바람직한 방안을 모색하고자 한다.

  • PDF

문자식을 포함한 대수 증명에 대한 중학교 3학년 학생들의 이해 연구 - 문맥과 문자식, 어느 것을 보는가 - (Understanding of Algebraic Proofs Including Literal Expressions: Expressions or Contexts?)

  • 장혜원;강정기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권3호
    • /
    • pp.359-374
    • /
    • 2014
  • 증명 학습과 관련하여 학생들이 경험하는 어려움과 오류는 수학교육계의 난제라 할 만하다. 증명에 대한 형식적 학습이 이루어지는 기하 영역에서뿐만 아니라 대수 증명에 대해서도 문자식의 처리나 일반성의 파악과 관련하여 어려움의 요소는 도처에서 발견된다. 본 연구에서는 두 3의 배수의 합은 3의 배수라는 명제에 대한 문자식을 포함한 증명에서 학생들이 증명의 문맥을 적절하게 이해하는가를 알아보는 데 초점을 둔다. 중학교 3학년 학생 24명을 대상으로 하여 증명 과정에 문자식이 포함되며 결론 부분은 빈 칸으로 생략되어 있는 증명을 제시하고 그 증명이 어떤 명제에 대한 증명인지 알아보도록 한 결과 반 이상의 학생이 문자식 자체에 근거하여 부적절한 응답을 하였다. 나아가 그 중 임의 추출한 세 명을 개별 면담함으로써 사고 특징을 조사하였다. 대수 증명을 식의 성립을 보이는 것으로 간주하는 증명관, 증명 수행과 이해에서의 문자식 해석의 괴리 등을 비롯한 사고 특징을 파악하고 그로부터 교육적 시사점을 도출하였다.

  • PDF

슈타이너.레무스 정리에 대한 다양한 증명 방법 (A Study on Various Proofs of the Steiner-Lehmus Theorem)

  • 한인기
    • 한국수학사학회지
    • /
    • 제17권3호
    • /
    • pp.93-108
    • /
    • 2004
  • 본 연구에서는 슈타이너$.$레무스(Steiner-Lehmus) 정리에 대한 다양한 증명을 찾아 이들 증명에 사용된 수학적 개념, 정리, 방법들을 고찰하며, 몇 가지 증명에 대해서는 기존의 기술 방법을 개선한 좀더 구체적인 형태로 기술하였다. 이를 통해, 이등변삼각형의 흥미로운 성질인 슈타이너$.$레무스 정리에 대한 다양한 증명 방법을 밝히고, 중등학교 수학교육의 질적이고 양적인 확장을 위한 기초 자료를 제공할 것이다.

  • PDF

피타고라스 정리의 다양한 증명 방법과 수학교육학적 아이디어 분석 (Analysis of various proofs of Pythagorean theorem)

  • 김영록;노희성;손은해
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제23권3호
    • /
    • pp.887-921
    • /
    • 2009
  • 인류 문명의 발달과 함께 폭넓게 활용된 수학적 내용 중의 하나가 피타고라스 정리이다. 특히, 이집트, 메소포타미아, 중국과 같은 고대 문명의 발생지에서 발굴되는 많은 역사적 기록 속에서 피타고라스 정리에 대한 내용을 찾아 볼 수 있다. 피타고라스 정리는 중등학교 수학교육에서 매우 중요한 정리로써, 정리 내용 자체뿐만 아니라 다양한 증명 방법과 증명 과정에 내재된 수학적 아이디어는 수학 교육학적 측면에서 큰 의미를 가지고 있다. 이에 본 연구에서는 먼저 피타고라스 정리의 390여 가지의 알려진 증명 방법들을 중심으로 하여, 피타고라스 정리의 다양한 증명 방법들에 대한 분석을 한다. 분석된 결과를 바탕으로 각 증명 방법들에 대한 핵심 아이디어, 선수학습개념, 주요 아이디어들을 알아보고 내재된 수학교육학적 아이디어를 분석할 것이다.

  • PDF

케일리 공식의 네 가지 증명 (Four proofs of the Cayley formula)

  • 서승현;권석일;홍진곤
    • 한국수학사학회지
    • /
    • 제21권3호
    • /
    • pp.127-142
    • /
    • 2008
  • 수학의 역사에서는 이미 발견되어 논증된 정리를 새로운 방법으로 공략함으로써 그 정리의 깊은 의미를 드러내는 작업의 기록을 쉽게 찾을 수 있다. 이 연구는 직관적으로 비교적 이해하기 쉬운 소재인 수형도를 대상으로 하여, 꼭지점의 집합이 결정되었을 때 수형도의 개수를 결정하여 주는 케일리 공식(Cayley formula)의 증명에 대한 서로 다른 네 가지 접근방법을 소개하는 것을 목적으로 한다. 네 가지 증명은 수형도의 성질로부터 유도된 재귀적 관계식을 이용한 케일리의 증명에서부터 특정한 수학적 대상과 수형도 사이의 일대일대응 관계에 주목하는 나머지 세 가지 증명으로 이루어진다. 특히, 마지막 증명은 순수한 수학적 작업이 다른 분야에 강력한 도구를 제공하는 전형적인 예를 보여준다.

  • PDF

기하증명과제에서 나타나는 중학교 1학년 학생들의 증명스키마와 그 특징 (Seventh Graders' Proof Schemes and Their Characteristics in Geometric Tasks)

  • 변규미;장경윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권2호
    • /
    • pp.191-205
    • /
    • 2017
  • 본 연구는 서울의 C중학교 1학년 학생들이 기하 증명 문제를 해결하는 과정에서 보여주는 증명스키마 유형과 그 특징을 조사한 것이다. 자료 분석은 Harel, & Sowder의 증명스키마 유형에 기초하여 이루어졌다. 연구 결과, 학업성취수준에 따라 학생들이 사용하는 증명스키마 유형에 차이가 있었다. 상위권에서 하위권으로 갈수록 변형적 증명스키마를 사용하는 학생의 비율이 감소하였고 귀납적(측정) 증명스키마를 사용하는 학생의 비율은 증가하였다. 또한 증명과정에서 비형식적인 부호 사용하기, 문제에서 주어진 그림 특정 비율로 인식하기 등 각 증명스키마 유형마다 고유한 특징이 나타났다. 이를 바탕으로 4개의 의미 있는 결론을 추출하였고, 이것이 증명 교수 학습에 주는 시사점을 논의하였다.

코사인 제 2법칙의 다양한 증명방법 분석

  • 권영인;서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.251-263
    • /
    • 2004
  • 피타고라스 정리와 코사인 제 2법칙 사이에는 어떤 관계가 있을까. 현재 우리의 교육과정에서는 피타고라스 정리는 중학교 3학년에서 코사인 제 2법칙은 고등학교 1학년에서 배운다. 그런데, 이 두 가지 수학적 사실 사이에는 밀접한 관계가 있다. 피타고라스 정리의 확장으로서 코사인 제 2법칙을 유도할 수 있다는 것이다. 코사인 제2법칙이 소개되어진 최초의 문헌은 Euclid의 <원론>으로 거슬러 올라간다. <원론>에 소개되어진 코사인 제 2법칙의 증명방법으로 시작하여 수 천년 동안 증명되어온 다양한 증명방법을 소개하고자 한다. 특히, 직각삼각형과 원이라는 큰 틀을 바탕으로 코사인 제 2법칙의 증명 방법에 대해 고찰하고, 그 외 다양한 증명방법을 분석하고자 한다.

  • PDF

독일 7학년 학생들의 증명문제 해결능력 분석

  • Kwak, Jeeyi;Reiss, Kristina;Thomas, Joachim
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제13권1호
    • /
    • pp.265-274
    • /
    • 2002
  • 이 프로젝트는 수학 수업 중 ‘추론’과 ‘증명’에 관련된 "문제해결과정"에 관심을 가지고, 처음 증명문제를 접하는 독일 7학년 학생들을 대상으로 문제해결능력에 필요한 요인들, 즉, 문제 해결을 위한 수학적 기본지식, 해결된 문제에 대한 인지정도, 논리적 사고 등을 관찰 분석하고 수학교사의 수학에 대한 신념(Beliefs)과 수업 방식이 학생들의 문제해결에 미치는 영향을 조사하는 것에 그 목적을 둔다. 이 프로젝트의 일부의 결과로써, 본 논문에서는 학생들 개개인의 문제해결과정과 그 능력, 그리고 수학에 대한 신념을 서술하고, 수학교사와 학생들의 서로 다른 수학에 대한 신념을 비교 분석한다.

  • PDF