• Title/Summary/Keyword: 수학적 문제 해결

Search Result 1,138, Processing Time 0.025 seconds

A Case Study about Problem Solving of Mathematics of Gifted Students (영재아의 수학문제해결에 관한 사례 연구)

  • Lee, Hyeok-Jun;Song, Yeong-Moo
    • School Mathematics
    • /
    • v.8 no.4
    • /
    • pp.379-396
    • /
    • 2006
  • The purpose of this study is to analyze characteristics of problem solving in mathematics for gifted students through case study on solving the mathematical problem for gifted students, and to investigate what are relationships with the cognitive and affective characteristics. To this end, this study was to analyze the characteristics on the problem solving in mathematics by using qualitative research method after it selected two students who had specific education for brilliant students. As a result, this study has shown that it had high preference for question with clear answer, high preference for individual inquiry learning, high adhesion to answer for question, and high adhesion for assignment on characteristics of process of problem solving, but there was much difference in spirit of competition. As to the characteristics of thoughts in problem solving, this study has shown that it had high grasp capacity, intuitive insight, and capacity for visualization, but there were differences in capacity for generalization and adaptability. However, both two students had low values in deductive thought. In addition, as to the home environment and cognitive and affective characteristics, they were not related to the characteristics on problem solving directly, but it has shown that it affected each other indirectly. As to the conclusion of this study, this researcher thinks that it will be valuable documentation in order to improve curriculum, development of textbooks, and teaching method for special education for the gifted students and education for secondary mathematics.

  • PDF

The Fourth Graders' Visual Representation in Mathematics Problem Solving Process (초등학교 4학년 학생들의 수학 문제해결과정에서의 시각적 표현)

  • Kim, So Hee;Lee, Kwangho;Ku, Mi Young
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.285-301
    • /
    • 2013
  • The purpose of the study is to analyze the 4th graders' visual representation in mathematics problem solving process and to find out how to teach the visual representation in mathematics problem solving process. on the basis of the results, this study gives several pedagogical implication related to the mathematics problem solving. The following were the conclusions drawn from the results obtained in this study. First, The achievement level of students and using visual representation in the mathematics problem solving are closely connected. High achieving students used visual representation in the mathematics problem solving process more frequently. Second, high achieving students realize the usefulness of visual representation in the mathematics problem solving process and use visual representation to solve mathematical problem. But low achieving students have no conception that visual representation is one of the method to solve mathematical problem. Third, students tend to especially focus on 'setting up an equation' when they solve a mathematical problem. Because they mostly experienced mathematical problems presented by the type of 'word problem-equation-answer'. Fourth even through students tried visual representation to solve a mathematical problem, they could not solve the problem successfully in numerous instances. Because students who face a difficulty in solving a problem try to construct perfect drawing immediately. But generating visual representation 2)to represent mathematical problem cannot be constructed at one swoop.

The effect of algebraic thinking-based instruction on problem solving in fraction division (분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향)

  • Park, Seo Yeon;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.

The Effects of Mathematical Problem Solving depending on Analogical Conditions (유추 조건에 따른 수학적 문제 해결 효과)

  • Ban, Eun-Seob;Shin, Jae-Hong
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.3
    • /
    • pp.535-563
    • /
    • 2012
  • This study was conducted to confirm the necessity of analogical thinking and to empirically verify the effectiveness of analogical reasoning through the visual representation by analyzing the factors of problem solving depending on analogical conditions. Four conditions (a visual representation mapping condition, a conceptual mapping condition, a retrieval hint condition and no hint condition) were set up for the above purpose and 80 twelfth-grade students from C high-School in Cheong-Ju, Chung-Buk participated in the present study as subjects. They solved the same mathematical problem about sequence of complex numbers in their differed process requirements for analogical transfer. The problem solving rates for each condition were analyzed by Chi-square analysis using SPSS 12.0 program. The results of this study indicate that retrieval of base knowledge is restricted when participants do not use analogy intentionally in problem solving and the mapping of the base and target concepts through the visual representation would be closely related to successful analogical transfer. As the results of this study offer, analogical thinking is necessary while solving mathematical problems and it supports empirically the conclusion that recognition of the relational similarity between base and target concepts by the aid of visual representation is closely associated with successful problem solving.

  • PDF

Mathematics teachers' Key Developmental Understandings for teaching equation writing (수학교사의 대수식 쓰기 지도를 위한 발달에 핵심적인 이해)

  • Choi, Yunhyeong;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.297-319
    • /
    • 2021
  • The present study explored a relationship between mathematical understandings of teachers and ways in which their knowledge transferred in designing lessons for hypothetical students from Gess-Newsome (1999)'s transformative perspective of pedagogical content knowledge. To this end, we conducted clinical interviews with four secondary mathematics teachers of their solving and teaching of equation writing. After analyzing the teacher participants' attention to Key Developmental Understandings (Simon, 2007) in solving equation writing, we sought to understand the relationship between their mathematical knowledge of the problems and mathematical knowledge in teaching the problems to hypothetical students. Two of the four teachers who attended the key developmental understandings solved the problems more successfully than those who did not. The other two teachers had trouble representing and explaining the problems, which involved reasoning with improper fractions or reciprocal relationships between quantities. The key developmental understandings of all four teachers were reflected in their pedagogical actions for teaching the equation writing problems. The findings contribute to teacher education by providing empirical data on the relationship between teachers' mathematical knowledge and their knowledge for teaching particular mathematics.

A Case study of Metacognitive Strategy Training on Mathematical Problem Solving (메타인지적 활동의 훈련을 통한 문제해결 과정에서의 사고 과정 분석 사례 연구)

  • Lee, Bong-Ju;Ko, Ho-Kyoung
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.291-305
    • /
    • 2009
  • The purpose of this article is to formulate the base that mathematical thinking power can be improved through activating the metacognitive ability of students in the math problem solving process. The guidance material for activating the metacognitive ability was devised based on a body of literature and various studies. Two high school students used it in their math problem solving process. They reported that their own mathematical thinking power was improved in this process. And they showed that the necessary strategies and procedures for math problem solving can be monitored and controled by analyzing their own metacognition in the mathematical thinking process. This result suggests that students' metacognition does play an important role in the mathematical thinking process.

  • PDF

An Analysis of Elementary Mathematics Curricula and Instructional Materials Related to Problem Solving (문제 해결에 관한 초등학교 수학과 교육과정 및 교과용도서 분석)

  • Pang, JeongSuk;Lee, Jiyoung;Seo, Eunmi
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.3
    • /
    • pp.583-605
    • /
    • 2016
  • Problem solving has been consistently emphasized in national mathematics curricula, whereas the foci of such an emphasis have been changed. Given this background, this study traced down major changes in emphasizing problem solving from the first national mathematics curriculum to the most recent 2015 curriculum. In particular, both the 2009 and the 2015 revised curricula were analyzed in detail to figure out the latest emphasis and trends. This paper then investigated whether a series of mathematics textbooks were aligned to the emphases of recent curricula. It finally discussed some issues that we need to reconsider with regards to problems, problem solving strategies, and the process of problem solving. As such, this study is expected to provide textbook developers with detailed implications on how to employ problem solving in new series of textbooks.

An Analysis of the Transformation Process of Representation through Interaction in Mathematical Problem Solving (수학적 문제해결에서 상호작용을 통한 표상의 변환 과정 분석)

  • Lee, Min Ae;Kang, Wan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.427-450
    • /
    • 2012
  • Using representations is essential for students to organize their thinking, to solve problems and to communicate each other. Students express information or situations suggested by problems easily and organize and infer them systematically using representations. Also, teachers are able to comprehend students' levels of understanding and thinking process better through them, and influence their representations. This study was conducted to understand mathematical representations of students uprightly and to seek implications for proper teaching of representations, by analyzing representations of students in mathematical problem solving process and the transformation process of representation via interactions.

  • PDF

The Effect of Mathematics Classes Using AlgeoMath on Mathematical Problem-Solving Ability and Mathematical Attitude: Focusing on the 'Cuboid' Unit of the Fifth Grade in Elementary School (알지오매스 기반 수업이 수학적 문제해결력 및 태도에 미치는 효과: 초등학교 5학년 '직육면체' 단원을 중심으로)

  • Seung Dong Lee;Jong Hak Lee
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • The purpose of this study is to investigate the effects of classes using AlgeoMath on fifth grade elementary students' mathematical problem-solving skills and mathematical attitudes. For this purpose, the 'cuboid' section of the 5th grade elementary textbook based on AlgeoMath was reorganized. A total of 8 experimental classes were conducted using this teaching and learning material. And the quantitative data collected before and after the experimental lesson were statistically analyzed. In addition, by presenting instances of experimental lessons using AlgeoMath, we investigated the effectiveness and reality of classes using engineering in terms of mathematical problem-solving ability and attitude. The results of this study are as follows. First, in the mathematical problem-solving ability test, there was a significant difference between the experimental group and the comparison group at the significance level. In other words, lessons using AlgeoMath were found to be effective in increasing mathematical problem-solving skills. Second, in the mathematical attitude test, there was no significant difference between the experimental group and the comparison group at the significance level. However, the average score of the experimental group was found to be higher than that of the comparison group for all sub-elements of mathematical attitude.

Influence of the Auxiliary Questions of Word Problems on the Problem Solving and Mathematical Thinking of Elementary School Students (문장제의 보조문항이 초등학생의 문제해결과 수학적 사고에 미치는 영향)

  • Yim, Youngbin
    • Education of Primary School Mathematics
    • /
    • v.23 no.2
    • /
    • pp.73-85
    • /
    • 2020
  • The purpose of this study was to examine the influence of the auxiliary questions of word problems presented to students on their problem solving-strategies and mathematical thinking and to discuss the educational implications of the results. As a result of making an analysis, problems that included auxiliary questions to give information on workable problem-solving strategies made it more possible for students of different levels to do relatively equal mathematical thinking than problems that didn't by inducing them to adopt efficient problem-solving strategies. And they were helpful for the students in the middle and lower tiers to find a clue for problem solving without giving up. But it's unclear whether the problems that provided possible strategies through the auxiliary questions stirred up the analogical thinking of the students. In addition, due to the impact of the problems provided, some students failed to adopt a strategy that they could have come up with on their own. On the contrary, when the students solved word problems that just offered basic recommendation by minimizing auxiliary questions, the upper-tiered students could devise various strategies, but in the case of the students in the middle and lower tiers, those who gave up easily or who couldn't find an answer were relatively larger in number.