• Title/Summary/Keyword: 세포지지체

Search Result 136, Processing Time 0.025 seconds

Inhibitory Effects of Wogonin Mixed with Hydrogel on Osteoclast Differentiation (우고닌-하이드로젤 지지체의 파골세포 분화 억제 효과)

  • Yang, Na-Rae;Lee, Jin-Moo;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Purpose: Wogonin is an active component isolated from scutellariae radix. This study was conducted to evaluate the inhibitory effect of wogonin mixed with hydrogel on osteoclast differentiation. Methods: It was performed to estimate cytotoxicity of Wogonin alginate hydrogel disk(WHD) in BMMs stimulated with RANKL, M-CSF. ROS synthesis and actin ring formation were analysed to observe the effect of WHD. Results: WHD has no cytotoxicity at the concentration of 0.1 ${\mu}g/ml$ or lower. 0.1 ${\mu}g/ml$, 1 ${\mu}g/ml$ WHD restrained the synthesis of ROS and 0.1 ${\mu}g/ml$, 1 ${\mu}g/ml$ WHD restrained the formation of actin ring. Conclusions: WHD has the inhibitory effect of osteoclast differentiation and bone resorption. Further studies are needed to treat osteoporosis by herbal medicine.

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Preparation and Characterization of Gelatin Scaffold Containing Microorganism Fermented Cellulose (미생물 발효 셀룰로오스와 젤라틴을 함유한 조직공학적 세포지지체의 제조 및 특성)

  • Lim, Youn-Mook;Kim, Mi-Yeong;Gwon, Hui-Jeong;Park, Jong-Seok;Nho, Young-Chang;Lee, Byeon-Heon;Lee, Jong-Dae;Song, Sung-Gi;Kim, Sung-Ho;Choi, Young-Hun;Lee, Sun-Yi
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2010
  • Cellulose, chitin, chitosan and hyaluronic acid are well known as polysaccharides. These polysaccharides have many effects on cell growth and differentiation. Cell activation increases with increasing the polysaccharides concentration. In this study, gelatin scaffold containing microorganism fermented cellulose, citrus gel were prepared by using irradiation technique. Physical properties of the scaffolds were investigated as a function of the concentrations of gelatin and citrus gel and the cell attachment, cell morphology and inflammation of the scaffolds also were characterized for regeneration of skin tissue.

Tissue Engineered Catilage Reconstruction with Alginate Sponge Containing Demineralized Bone Particles (탈미네랄골분이 첨가된 알지네이트 스펀지에서 조직공학적 연골 재건)

  • Kim, Hye Min;Park, Jin Young;Kim, Eun Young;Song, Jeong Eun;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.278-285
    • /
    • 2014
  • Demineralized bone particles (DBP) and alginate hybrid sponges were fabricated at 10, 20, 40 and 80% DBP/alginate hybrid ratios for seeding chondrocyte. Cell proliferation was measured via MTT assay. Morphological observation, histology, biological assay and RT-PCR were performed at each time point 1, 2 and 3 weeks. The cell viability was better in 20% DBP/alginate sponges than in other sponges. SEM results showed that more attached and more proliferated cells in the 20% DBP/alginate sponges with the lapse of time. Finally, histochemical assay results showed that the phenotype of chondrocyte was well maintained and both acidic mucopolysaccharide and type II collagen was well formed at 20% sponges. This study suggested that DBP/alginate sponge may serve as a potential cell delivery vehicle and a structural basis for tissue engineered articular cartilage.

Transforming growth factor $(TGF)-{\beta}1$ conjugated chitosan film for enhanced osteoblastic activity (변형성장인자가 고정된 키토산 필름의 골아세포 활성에 미치는 영향)

  • Park, Yoon-Jeong;Lee, Jue-Yeon;Kim, Kyung-Hwa;Kim, Tae-Il;Lee, Myung-Hee;Shin, Seung-Yoon;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young;Han, Soo-Boo;Min, Byung-Moo;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.4
    • /
    • pp.781-790
    • /
    • 2004
  • 골아세포의 생물학적 기능을 증진시키기 위해 키토산의 표면개질에 대하여 연구하였다. 생체적합성 천연고분자인 키토산은 1차 아미노기를 소유하고 있으므로 적정한 공유결합제를 사용하여 세포성장인자와 같은 생리활성을 지닌 단백질을 키토산의 표면에 고정시킬 수 있다. 본 연구에서는 키토산을 필름형태로 제조하여 세포성장인자 중 형질전환성장인자를 고정하고 골아세포의 부착, 성장 및 분화를 증가시키고자 하였다. 형태전환성장인자의 고정화 효율은 단순한 흡착방법에 비해 높았으며, 표면에 형성된 공유결합은 매우 안정하였다. 골아세포를 배양하여 초기세포부착능에 대한 영향을 연구한 결과, 배양 후 4시간, 1일째, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 많은 수의 골아세포가 부착되었고, 더 많이 신장된 부착형태를 보였다. 세포활성정도와 배양 후 4주일째의 칼슘축적량을 측정한 결과, 형질전환성장인자를 고정한 키토산 표면에서 고정하지 않은 키토산의 표면에 비해 더 높았다. 위의 결과는 키토산 표면에 형태전환성장인자의 고정이 성공적으로 이루어졌으며, 또한 실제로 활성이 있는 것이 증명되었다. 위의 연구 결과에서 형질전환성장인자로 고정된 키토산은 골아세포의 초기 부착 및 분화를 촉진시켰음을 알 수 있었던 바 성장인자의 표면고정은 임플란트 및 조직공학용 지지체에도 적용하여 생체적합성과 세포기능을 증진시키는데 이용할 수 있음을 알 수 있었다.

Reconstruction of Rabbit Corneal Epithelium using Lyophilized Amniotic Membrane and Dynamic Culture Method (동결건조 양막과 동적배양법을 이용한 토끼 각막 상피층의 재구성)

  • Ahn, Jae-Il;Jang, In-Keun;Shin, Youn-Ho;Seo, Young-Kwon;Yoon, Hee-Hun;Yoon, Mun-Young;Kim, Jae-Chang;Song, Kye-Yong;Lee, Hee-Gu;Yang, Eun-Kyung;Kim, Ki-Ho;Park, Jung-Keug
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.305-310
    • /
    • 2005
  • Reconstruction of rabbit corneal epithelium was performed through dynamic culture method using self-manufactured amniotic membrane supporter and lyophilized amniotic membrane. Rabbit corneal epithelial cells were cultured and cryopreserved after isolation from limbus, and the cells could be proliferated by passage number 10. The basal layer was well formed, and the epithelium layer was constructed tightly by the increase of cell proliferation and differentiation by dynamic culture method than static culture. Thus, the reconstruction of the corneal epithelium using lyophilized amniotic membrane is considered to be a good in vitro model for transplantation of corneal epithelium to patients with a severely damaged cornea.

Preparation and Release Behavior of Ipriflavone-Loaded PLGA Microsphere for Tissue Engineered Bone (이프리플라본을 함유한 생분해성 PLGA 미립구의 제조 및 조직공학적 골재생을 위한 영향평가)

  • So, Jung-Won;Jang, Ji-Wook;Kim, Soon-Hee;Kim, Geun-Ah;Choi, Jin-Hee;Rhee, John-M.;Son, Young-Suk;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • The aim of this research was to prepare microparticulate systems based on poly (lactide-co-glycolide)(PLGA) for the local release of ipriflavone in order to reduce bone loss. We developed the IP loaded PLGA microspheres using relatively simple oil-in-water(O/W) solvent evaporation method. HPLC was used to perform the in vitro release test of IP and morphology of cell attached on the micro-spheres was investigated using SEM. Cytotoxicity was assayed by cell counting kit-8 (CCK-8) test. Osteogenic differential cells were analyzed by ALP activity. Through RT-PCR analysis, we observed osteocalcin, ALP, and Type I collagen mRNA expression. The release of IP in vitro was more prolonged over 42 days and IP/PLGA microspheres showed the improvement on the cell proliferation, ALP activity and RT-PCR comparing with control (only PLGA). This initial research will be used to direct future work involved in developing this composite injectable bone tissue engineering system.

Anti-photoaging Effects of Flavonoid glycosides from shizophragma hydrangeoides (바위수국으로부터 분리한 플라보노이드 배당체의 광노화 예방 효과)

  • Sung Chun Kim;So Yeon Oh;Hyejin Hyeon;Yong-Hwan Jung;Young-Min Ham
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.25-25
    • /
    • 2022
  • 피부 노화는 피부와 피부 지지층 등의 광범위한 퇴행 과정을 말한다. 피부 노화의 원인은 흡연, 공해, 스트레스 등이 있지만, 그 중에서도 자외선(ultra violet, UV) 조사가 가장 큰 요인으로 꼽힌다. 반복적인 자외선 조사에 의해 진행되는 피부노화를 광노화라고 하며 그 가장 큰 특징으로는 콜라겐 섬유와 엘라스틴의 감소로 야기되는 주름을 들 수 있다. 본 연구에서는 제주에서 채집한 바위수국의 추출물 및 분획물의 항산화 및 자외선으로 인한 피부노화 예방(anti-photoaging) 효능을 확인하고, 활성물질을 분리하여 광노화 예방 효능과 그 메커니즘을 확인하였다. 실험에 사용된 바위수국은 범의귀과의 덩굴성 식물로 바위면이나 나무줄기 등에 붙어서 자라며, 한국(제주, 울릉도)과 일본에 분포한다. 바위수국 추출물과 분획물에서 총 페놀 함량. 총 플라보이드 함량, DPPH 및 ABTS 라디칼소거 활성의 항산화 실험 결과, 부탄올과 에틸아세테이트 분획층에서 강력한 항산화 활성이 관찰되었다. 또한 UVA를 조사한 인간 진피 섬유아세포 (human dermal fibroblast, HDF)데 대한 콜라겐 분해효소인 matrix metalloproteinase-1(MMP-1) 생성 억제 활성을 확인한 결과, 부탄올 분획층이 세포 생장 저해 없이 가장 우수한 효능이 확인되었다. 따라서 부탄올 분획층에서 주요 성분 분리 실험을 수행하여 총 4개의 화합물을 분리하였다; Chlorogenic acid (1), Quercetin-3-O-glucosyl-(1-2)-rhamnoside (2), Quercetin-3-O-xylosyl-(1-2)-rhamnoside (3), Quercitrin (4). 분리한 4개의 물질의 MMP-1 생성 억제 활성을 비교한 결과 화합물 2가 세포독성 없이 MMP-1 생성 억제 효능이 우수하였고, 이후 화합물 2의 광노화 예방 효능과 그 메커니즘을 확인하였다. 화합물 2는 MMP-1의 생성을 억제할 뿐만 아니라 procollagen type I의 생성을 증가시켰으며, MMP-1 생성에 관여하는 mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) 신호전달경로를 하향 조절하며, 콜라겐 생성과 관련된 Transforming growth factor-β (TGF-β)/Smad 신호전달경로를 상향 조절하여 UVA에 의한 광노화 예방에 효능을 나타내었다. 이러한 결과들을 바탕으로, 바위수국은 항노화(anti-aging) 기능성 화장품 및 이너뷰티 기능성 식품 소재로 개발이 가능할 것으로 기대된다.

  • PDF

Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration (탈미네랄 골분이 비율별로 포접된 알지네이트 미세캡슐을 이용한 조직공학적 연골재생)

  • Kim, A Ram;Kim, Hye Min;Lee, Jung Keun;Lee, Ji Hye;Song, Jeong Eun;Yoon, Kun Ho;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.768-775
    • /
    • 2012
  • Alginate, obtained from the seaweeds, is a widely used biomaterial for cell transplantation, since its positive effect on viability of capsulized cells and its easier encapsulation capability of living cells. Demineralized bone powder (DBP), derived from the natural bone tissue, is widely applied for clinical trials for its low rate of reaction and antigenicity. A chondrocyte was seeded into an alginate with DBP of different contents, and a microcapsule was produced. The adhesion and proliferation of cells was observed through the MTT analysis, and the PCR was applied to estimate the content of the glycosaminoglycan (sGAG) and collagen, and confirm the specific genetic pattern of the chondrocytes. Also, the alginate microcapsule where the chondrocyte is seeded was extracted after transplantation under the skin of a nude mouse, and was immunochemically stained. The experimental result confirmed that the alginate microcapsule containing 1% of DBP not only showed the highest proliferation of cell but had a positive effect of chondrocytes by the interaction between the alginates and the growth factor in DBP. It can be expected that the microcapsule with application of the alginates and DBP might be an appropriate scaffold for tissue engineering.

THE EFFECTS OF THE PLATELET-DERIVED GROWTH FACTOR-BB ON THE PERIODONTAL TISSUE REGENERATION OF THE FURCATION INVOLVEMENT OF DOGS (혈소판유래성장인자-BB가 성견 치근이개부병변의 조직재생에 미치는 효과)

  • Cho, Moo-Hyun;Park, Kwang-Beom;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.535-563
    • /
    • 1993
  • New techniques for regenerating the destructed periodontal tissue have been studied for many years. Current acceptable methods of promoting periodontal regeneration alre basis of removal of diseased soft tissue, root treatment, guided tissue regeneration, graft materials, biological mediators. Platelet-derived growth factor (PDGF) is one of polypeptide growth factor. PDGF have been reported as a biological mediator which regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purposes of this study is to evaluate the possibility of using the PDGF as a regeneration promoting agent for furcation involvement defect. Eight adult mongrel dogs were used in this experiment. The dogs were anesthetized with Pentobarbital Sodium (25-30 mg/kg of body weight, Tokyo chemical Co., Japan) and conventional periodontal prophylaxis were performed with ultrasonic scaler. With intrasulcular and crestal incision, mucoperiosteal flap was elevated. Following decortication with 1/2 high speed round bur, degree III furcation defect was made on mandibular second(P2) and fourth(P4) premolar. For the basic treatment of root surface, fully saturated citric acid was applied on the exposed root surface for 3 minutes. On the right P4 20ug of human recombinant PDGF-BB dissolved in acetic acid was applied with polypropylene autopipette. On the left P2 and right P2 PDGF-BB was applied after insertion of ${\beta}-Tricalcium$ phosphate(TCP) and collagen (Collatape) respectively. Left mandibular P4 was used as control. Systemic antibiotics (Penicillin-G benzathine and penicillin-G procaine, 1 ml per 10-25 1bs body weight) were administrated intramuscular for 2 weeks after surgery. Irrigation with 0.1% Chlorhexidine Gluconate around operated sites was performed during the whole experimental period except one day immediate after surgery. Soft diets were fed through the whole experiment period. After 2, 4, 8, 12 weeks, the animals were sacrificed by perfusion technique. Tissue block was excised including the tooth and prepared for light microscope with H-E staining. At 2 weeks after surgery, therer were rapid osteogenesis phenomenon on the defected area of the PDGF only treated group and early trabeculation pattern was made with new osteoid tissue produced by activated osteoblast. Bone formation was almost completed to the fornix of furcation by 8 weeks after surgery. New cementum fromation was observed from 2 weeks after surgery, and the thickness was increased until 8 weeks with typical Sharpey’s fibers reembedded into new bone and cementum. In both PDGF-BB with TCP group and PDGF-BB with Collagen group, regeneration process including new bone and new cementum formation and the group especially in the early weeks. It might be thought that the migration of actively proliferating cells was prohibited by the graft materials. In conclusion, platelet-derived growth factor can promote rapid osteogenesis during early stage of periodontal tissue regeneration.

  • PDF