• Title/Summary/Keyword: 선충포식곰팡이

Search Result 13, Processing Time 0.019 seconds

Morphological and Phylogenetic Characteristics of Nematophagous Fungi (식물기생성 선충 포식곰팡이의 형태 및 계통분류학적 특성)

  • Kang, Doo-Sun;Jeon, Han-Ki;Son, Hee-Seong;Whang, Kyung-Sook;Cho, Cheon-Whi
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • Twenty-two strains of nematophagous fungi were isolated from 100 soil samples. Nematophagous fungi were classified into three categories; 3-dimensional adhesive nets (A group), 2-dimensional adhesive nets (B group) and constricting ring (C group). Nine strains were selected and identified on the basis of morphological characteristics (hypha, conidiophore, form and size of conidia, number of conidia, node of conidophore, number and location of septa, size and color of chlamydospore) and ITS (internal transcribed spacer) region of rDNA sequences. As the results, the isolated were identified as belonging to the species of Monacrosporium thaumasium (Kan-2, Kan-4, Kan-11), Arthrobotrys oligospora (Kan-9, Kan-13, Kan-20, Kan-21), A. musiformis (Kan-12), and A. dactyloides (Kan-22).

Comparison of Predacity of Nematode Predatory Fungi against Meloidogyne incognita (국내 분리 포식성곰팡이들의 고구마뿌리혹선충에 대한 포식 능력 비교)

  • 이재국;김동근;이영기
    • Korean journal of applied entomology
    • /
    • v.39 no.2
    • /
    • pp.111-115
    • /
    • 2000
  • Fifty-two nematode predatory fungi were isolated from 37 soil samples collected from eight provinces in Korea. Isolated fungi were tested their predacity against Rhabditis sp. and Meloidogyne incognita in petri dish, and against M. incognita in greenhouse pot experiments. Fifty isolates had trapping organ of adhesive networks and two isolates had adhesive column or adhesive knob. In petri dish experiments, 5 1 isolates against Rhubditis sp. and 26 isolates against M. incognita showed over 91 % of predacity; in greenhouse experiments, however, only three isolates showed over 81% of predacity. These results imply that the results from the laboratory experiments are not consistent with those from the greenhouse experiments. Therefore, to select a promising biocontrol predatory fungi for plant-parasitic nematodes, the screening experiment should be conducted in conditions close to nature.

  • PDF

Nematode-Trapping Fungi Showed Different Predacity among Nematode Species (선충 종류별 4종 포식성곰팡이의 포식력 차이)

  • Kang, Heonil;Choi, Insoo;Park, Namsook;Bae, Changhwan;Kim, Donggeun
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • Nematode-trapping fungi develop trap and consume nematodes are an important part of the subsoil ecosystem and they share a special predator-prey relationship. Four nematode-trapping species, there with adhesive network, Arthrobotrys oligospora, A. sinensis, A. thaumasia and one with constricting ring, Drechslerella brochopaga were collected from soils in Korea and tested their predacity against 12 different nematode species. They were three feeding groups, plant-parasitic (Meloidogyne incognita and Pratylenchus penetrans), fungivorous (Aphelenchus avenae), bacteriovorous (Betlerius sp. and Diplogasteritus sp. in diplogasterid, Panagrolaimus labiatus, P. multidentatus in panagrolaimid, Mesorhabditis irregularis, Pelodera strongyloides and Rhabditis sp., in rhabditid, and Acrobeloides sp. in cephalobid). Results showed that nematode-trapping fungi successfully captured most of nematodes in Petri dish in the group of plant-parasitic nematodes and rhabditids, moderately and variably in other nematodes in 15 days. But it didn't captured A. avenae and Acrobeloides sp. both belongs to c-p group 2. Numbers of Acrobeloides sp. and A. avenae even increased during the test period. The results of this study indicated that nematode-trapping fungi may have specificity among nematode species.

Key to the Korean Nematode-Trapping Fungi with Additional Descriptions of Arthrobotrys flagrans and A. superba (한국 선충 포식성곰팡이 분류검색표 및 Arthrobotrys flagrans 와 A. superba의 재기재)

  • Seo, Jongmin;Kang, Heonil;Kwon, Giyoon;Park, Namsook;Bae, Changhwan;Choi, Insoo
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.291-301
    • /
    • 2019
  • Nematophagous fungi can capture, kill, and digest nematodes using a specific capturing organ. Of the nematophagous fungi, while Arthrobotrys flagrans and A. superba have been described previously, certain characteristics have not been described. For a detailed description of the two nematophagous fungi, the fungi were isolated from soil samples and produced in a pure culture. Morphological characteristics, such as predatory ability (according to the nematode species), shape, and size of predatory organ, conidia, and chlamydospore were investigated and they were used for identification of the fungal isolates along with molecular phylogenetic analysis. Furthermore, this study provides the classification key for 21 nematophagous species.

Biological Control of Root-Lesion Nematodes(Pratylenchus spp.) by Nematode-Trapping Fungi (선충 포식성 곰팡이를 이용한 뿌리썩이선충(Pratylenchus spp.)의 생물학적 방제)

  • 손흥대;김성렬;최광호;추호렬
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.403-407
    • /
    • 2000
  • For the biological control of the root-lesion nematodes, Pratylenchus spp., which damage directly and indirectly to the leaf perilla, the nematical effect of three nematode-trapping fungi, Arthrobotrys oligospora, A. conoides and A. dactyloides was evaluated in the field. Three species of Arthrobotrys were isolated from the culture soil of leaf perilla in 1998 and were observed the capture of the root-lesion nematodes, Pratylenchus spp. by adhesive hyphal networks or constricting rings on agar. At 40 days after treatment, the plant-parasitic nematodes and root-lesion nematode populations were approximately increased 3.5 fold in untreated control plot, while the nematode population in fungi treatment plots was similar to initial population. In the A. dactyloides plot, however, the population of plant-parasitic nematodes and Pratylenchus spp. was approximately reduced 65% and 53%, respectively. Thus, the fungus A. dachyloides should provide as biological agent for the control of Pratylenchus spp.

  • PDF

Distribution of Nematophagous Fungi Under Different Habitats (서식 환경에 따른 선충잡이곰팡이의 종류와 분포)

  • Kim, Dong-Geun;Bae, Su-Gon;Shin, Yong-Seub
    • The Korean Journal of Mycology
    • /
    • v.29 no.2
    • /
    • pp.123-126
    • /
    • 2001
  • A survey of 43 soil samples collected from southern Korea has shown that nematophagous fungi occurred in a variety of habitats. Nine predatory and two endoparasitic species were isolated. Habitats were classified into four types, i. e., mountain, upland, paddy field and greenhouse. Of these, greenhouse and upland had the highest incidence of nematophagous fungi $(95{\sim}100%)$ compared with mountain (37.5%) and paddy field (16.7%). The most common species was Arthrobotrys oligospora Fres., which was isolated from 25.5% of soil samples. Net forming species were the most abundant (72.5%), followed by constricting ring (10.0%), adhesive hyphae (7.8%), endoparasitic fungi (5.0%), and adhesive knob (4.8%). Nematophagous fungi were isolated move frequently from cultivated soil rather than uncultivated mountainous soil.

  • PDF

First Report of an Unrecorded Nematode-trapping Fungus, Arthrobotrys sinensis in Korea (국내 미기록 선충포식성 곰팡이 Arthrobotrys sinensis의 형태 및 분류)

  • Ha, Jihye;Kang, Heonil;Kang, Hangwon;Kim, Donggeun;Lee, Dongwoon;Kim, Yongchul;Choi, Insoo
    • Korean journal of applied entomology
    • /
    • v.58 no.1
    • /
    • pp.9-13
    • /
    • 2019
  • Nematode-trapping fungi use various specialized traps to capture nematodes. A fungus that can capture nematodes in three dimensional adhesive networks was isolated from the soil around the root of Cucumis melo L. (Oriental melon) in Seongju, Korea. The conidiophores were found to be septate, hyaline, erect and $290-528(342.8){\mu}m$ high. It produces obovoid shape and 1-3 septate (commonly 2-septate) conidia with a size of $30.5{\times}20.3{\mu}m$. Molecular analysis of 5.8 S rDNA displayed 99% similarity to Arthrobotrys sinensis. On the basis of morphological, morphometric and molecular studies, the fungus was identified as A. sinensis. It is the first report in Korea which can be one of biological control resource of plant-parasitic nematode.

Control Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide (생물학적 살선충제의 뿌리혹선충 (Meloidogyne incognita) 방제 효과)

  • Park, Moon-Hyun;Walpola, Buddhi Charana;Kim, Sun-Joong;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.162-168
    • /
    • 2012
  • An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Bacillus subtilis C-9, which degrade the collagen and gelatin, were isolated from horticulture plantation soil in Kyungpook Sungju-gun Seonnam-myun and Chungnam Gongju-gun Woosung-myun to develop biological nematode pesticide. When $5,000mg\;kg^{-1}$ of A. thaumasia Nema-1 nematicide powder ($7.0{\times}10^3cfu\;g^{-1}$) was treated to pot including Meloidogyne incognita, the number of nematode's egg mass, which is a index of nematicidal activity, decreased to 35% compared to control. While the number of nematode's egg mass decreased to 67% by treating the nematicide powder mixture of $5,000mg\;kg^{-1}$ Nema-1 and B. subtilis C-9 ($8.5{\times}10^5cfu\;g^{-1}$). Furthermore the number of nematode's egg mass of the mixture containing cinnamon extract $10mg\;kg^{-1}$, each $5,000mg\;kg^{-1}$ of Nema-1 and C-9 nematicide powder was decreased to 84%, comparing to the result showed the number of nematode's egg mass decreased to 24%, by the treatment of chemical nemato pesticide Fosthiazate $24mg\;kg^{-1}$. These results suggested the mixture of microorganisms and plant extract was more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

Nematicidal Effect of Root-knot Nematode (Meloidogyne incognita) by Biological Nematicide (생물학적 선충 방제제를 이용한 고구마 뿌리혹선충 (Meloidogyne incognita)의 방제효과)

  • Park, Moon-Hyun;Kim, Jin-Kwang;Choi, Won-Ho;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.228-235
    • /
    • 2011
  • An nematophagous fungi Arthrobotrys thaumasia Nema-1 and Pseudomonas putida C-5, which degrade the collagen and gelatin, was isolated from controlled horticultural soils in Seonnam-myun, Sungju-gun, Kyungpook and Woosung-myun, Gongju-shi, Chungnam to develop biological nematode pesticide. When $5,000mL\;L^{-1}$ of A. thaumasia Nema-1 culture was treated to Meloidogyne incognita, the nematicidal activity resulted in 55% at 72 hours after treatment. While the nematicidal activity increased to 65% by treating the culture mixture of $5,000mL\;L^{-1}$ Nema-1 and P. putida C-5 after 72 hours. Furthermore, the nematicidal activity of the mixture containing cinnamon extract $50mg\;L^{-1}$, each $5,000mL\;L^{-1}$ of Nema-1 and C-5 culture was elevated to 89% at 72 hours after treatment, comparing to the result showed 17% and 57% of the nematicidal activity, respectively by the treatment of chemical nemato pesticide Fosthiazate $50mg\;L^{-1}$ and neem oil $2,000mL\;L^{-1}$. These results suggested that the mixture of microorganisms and plant extract were more effective biological nematicide than the case of only microorganism or plant extract for nematode control.

Morphological and Phylogenetic Characteristics of a Nematophagous Fungus, Drechslerella brochopaga Kan-23 (국내 미기록종 선충포식성 곰팡이 Drechslerella brochopaga Kan-23의 형태 및 계통분류)

  • Cho, Chun-Hwi;Kang, Doo-Sun;Kim, Yoon-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • Strain Kan-23 was extracted from nematophagous fungi, which were isolated from the soil sample of oriental melon field. The strain exhibited the slow-growing characteristic forming conidia after prolonged incubation for 30 days. Morphological features of strain Kan-23 were observed under scanning electron microscope (SEM). It possesses erect conidiophores which contain $2{\sim}3$ side branches, with each branch producing $5{\sim}10$ conidia. The size of conidiophores were between $160{\sim}450\;{\mu}m$. Conidia were ellipsoidal with three septa[septum] in each conidium. Strain Kan-23 captured nematodes by means of giant constricting rings, which were observed in the glucose peptone agar medium. ITS region of rDNA sequence was analyzed. On the basis of the high sequence similarity of ITS region (99%), the Kan-23 strain was closely related to Drechslerella brochopaga (U51950). This is the first report on Drechslerella brochopaga as a nematophagous fungus in Korea.