Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.3.149

Nematode-Trapping Fungi Showed Different Predacity among Nematode Species  

Kang, Heonil (Plant Bioscience, College of Natural Resources and Life Science, Pusan National University)
Choi, Insoo (Plant Bioscience, College of Natural Resources and Life Science, Pusan National University)
Park, Namsook (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University)
Bae, Changhwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources)
Kim, Donggeun (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University)
Publication Information
Research in Plant Disease / v.25, no.3, 2019 , pp. 149-155 More about this Journal
Abstract
Nematode-trapping fungi develop trap and consume nematodes are an important part of the subsoil ecosystem and they share a special predator-prey relationship. Four nematode-trapping species, there with adhesive network, Arthrobotrys oligospora, A. sinensis, A. thaumasia and one with constricting ring, Drechslerella brochopaga were collected from soils in Korea and tested their predacity against 12 different nematode species. They were three feeding groups, plant-parasitic (Meloidogyne incognita and Pratylenchus penetrans), fungivorous (Aphelenchus avenae), bacteriovorous (Betlerius sp. and Diplogasteritus sp. in diplogasterid, Panagrolaimus labiatus, P. multidentatus in panagrolaimid, Mesorhabditis irregularis, Pelodera strongyloides and Rhabditis sp., in rhabditid, and Acrobeloides sp. in cephalobid). Results showed that nematode-trapping fungi successfully captured most of nematodes in Petri dish in the group of plant-parasitic nematodes and rhabditids, moderately and variably in other nematodes in 15 days. But it didn't captured A. avenae and Acrobeloides sp. both belongs to c-p group 2. Numbers of Acrobeloides sp. and A. avenae even increased during the test period. The results of this study indicated that nematode-trapping fungi may have specificity among nematode species.
Keywords
Biocontrol; c-p group; Feeding group; Nematophagous fungi; Specificity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barron, G. L. 1977. The Nematode-Trapping Fungi. Canadian Biological Publications, Guelph, ON, Canada. 140 pp.
2 Bongers, T. and Bongers, M. 1998. Functional diversity of nematodes. Appl. Soil Ecol. 10: 239-251.   DOI
3 Bouwman, L. A., Hoenderboom, G. H. J., van der Maas, K. J. and de Ruiter, P. C. 1996. Effects of nematophagous fungi on numbers and death rates of bacterivorous nematodes in arable soil. J. Nematol. 28: 26-35.
4 Bridge, J. and Starr, J. L. 2007. Plant Nematodes of Agricultural Importance: A Color Handbook. Academic Press, Boston, Ma, USA. 152 pp.
5 Cayrol, J. C. 1983. Biological control of Meloidogyne by Arthrobotrys irregularis. Rev. Nematol. 6: 265-273.
6 Chaudhuri, J., Parihar, M. and Pires-daSilva, A. 2011. An introduction to worm lab: from culturing worms to mutagenesis. J. Vis. Exp. 47: 2293.
7 Cooke, R. C. and Satchuthananthavale, V. 1968. Sensitivity to mycostasis of nematode-trapping hyphomycetes. Trans. Br. Mycol. Soc. 51: 555-561.   DOI
8 Dobbs, C. G. and Hinson, W. H. 1953. A widespread fungistasis in soils. Nature 172: 197-199.   DOI
9 Ferris, H., Eyre M., Venette, R. C. and Lau, S. S. 1996. Population energetics of bacterial-feeding nematodes: stage-specific development and fecundity rates. Soil Biol. Biochem. 28: 271-280.   DOI
10 Ferris, H., Venette, R. C. and Lau, S. S. 1997. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budget. Soil Biol. Biochem. 29: 1183-1194.   DOI
11 Freckman, D. W., Duncan, D. A. and Larson, J. R. 1979. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32: 418-422.   DOI
12 Fresenius, G. 1852. Contributions to Mycology. 2nd ed. Heinrich Ludwig Brommer Verlag, Frankfurt. 80 pp.
13 Hsueh, Y. P., Mahanti, P., Schroeder, F. C. and Sternberg, P. W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23: 83-86.   DOI
14 Galper, S. Smith, L. J., Eden, L. M. and Stirling, G. R. 1995. Simple screening methods for assessing the predacious activity of nematode-trapping fungi. Nematologica 41: 130-140.   DOI
15 Gaspard, J. T. and Mankau, R. 1987. Density-dependence and host-specificity of the nematode-trapping fungus Monacrosporium elipsosporum. Rev. Nematol. 10: 241-246.
16 Griffiths, B. S., Young, I. M. and Boag, B. 1991. Nematodes associated with the rhizosphere of barley (Hordeum vulgare). Pedobiolonia 35: 265-272.
17 Hastuti, L. D. S. and Faull, J. 2018. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode Meloidogyne incognita on deli tobacco (Nicotiana tabaccum l) cv. deli 4. Earth Environ. Sci. 130: 012009.
18 Hayes, W. A. and Blackburn, F. 1966. Studies on nutrition of Arthrobotrys oligospora Fres., and A. robusta Dudd: the predacious phase. Ann. Appl. Biol. 58: 51-60.   DOI
19 Kim, D. G., Lee, J. K., Lee, Y. K., Choi, Y. C. and Kim, Y. K. 1997. Description on five species of Arthrobotrys (Corda) Schenck, Kendrick & Pramer in Korea and their key. RDA. J. Crop Prot. 39: 33-41. (In Korean)
20 Kiontke K. and Fitch, D. H. A. 2013. Nematodes. Curr. Biol. 23: R862-R864.   DOI
21 Linford, M. B. 1937. Stimulated activity of natural enemies of nematodes. Science 85: 123-124.   DOI
22 Linford, M. B., Yap, F. and Oliveira, J. M. 1938. Reduction of soil populations of the root-knot nematode during decomposition of organic matter. Soil Sci. 45: 127-142.   DOI
23 Luc, M., Bridge, J. and Sikora, R. A. 2005. Reflection on nematology in subtropical and tropical agriculture. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, eds. by M. Luc, R. A. Sikora and J. Bridge, pp. 1-10. CABI, Egham, UK.
24 Mankau, R. 1962. Soil fungistasis and nematophagous fungi. Phytopathology 52: 611-615.
25 Moody, E. H., Lownsbery, B. F. and Ahmed, J. M. 1973. Culture of the root-lesion nematode Pratylenchus vulnus on carrot disks. J. Nematol. 5: 225-226.
26 Pramer, D. and Stoll, N. R. 1959. Nemin: a morphogenic substance causing trap formation by predacious fungi. Science 129: 966-967.   DOI
27 Nordbring-Hertz, B. 2004. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora: an extensive plasticity of infection structures. Mycologist 18: 125-133.   DOI
28 Nordbring-Hertz, B. and Mattiasson, B. 1979. Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281: 477-479.   DOI
29 Pelagatti, O. and Piccolo, A. 1990. Further considerations on the use of R 350 with a base of Arthrobotrys irregularis. Redia 73: 229-242.
30 Rosenzweig, W. D., Premachandran, D. and Pramer, D. 1985. Role of trap lectins in the specificity of nematode capture by fungi. Can. J. Microbiol. 31: 693-695.   DOI
31 Sasser, J. N. and Freckman, D. W. 1987. A world perspective on mematology: the role of the society. In: Vistas on Nematology, eds. by J. A. Veech and D. W. Dickson, pp. 7-14. Society of Nematologists, Hyattsville, MD, USA.
32 Saxena, R. C., Jilani, G. and Kareem, A. 1989. Effects of neem on stored grain insects. In: Focus on Phytochemical Pesticides, The Neem Tree, ed. by M. Jacobson, pp. 97-112. CRC Press, Boca Raton, FL, USA.
33 Stirling G. R. and Mani, A. 1995. The activity of nematode-trapping fungi following their encapsulation in alginate. Nematologica 41: 240-250.   DOI
34 Timper, P. 2014. Conserving and enhancing biological control of nematodes. J. Nematol. 46: 75-89.
35 Tunlid, A., Jansson, H.-B. and Nordbring-Hertz, B. 1992. Fungal attachment to nematodes. Mycol. Res. 96: 401-412.   DOI
36 von Reuss, S. H., Bose, N., Srinivasan, J., Yim, J. J., Judkins, J. C., Stemerg, P. W. et al. 2012. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134: 1817-1824.   DOI