DOI QR코드

DOI QR Code

Nematode-Trapping Fungi Showed Different Predacity among Nematode Species

선충 종류별 4종 포식성곰팡이의 포식력 차이

  • Kang, Heonil (Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Choi, Insoo (Plant Bioscience, College of Natural Resources and Life Science, Pusan National University) ;
  • Park, Namsook (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Bae, Changhwan (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Kim, Donggeun (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University)
  • 강헌일 (부산대학교생명자원과학대학 식물생명과학과) ;
  • 최인수 (부산대학교생명자원과학대학 식물생명과학과) ;
  • 박남숙 (부산대학교생명자원과학대학 선충연구센터) ;
  • 배창환 (환경부 국립생물자원관 생물자원활용부) ;
  • 김동근 (부산대학교생명자원과학대학 선충연구센터)
  • Received : 2019.05.01
  • Accepted : 2019.08.16
  • Published : 2019.09.30

Abstract

Nematode-trapping fungi develop trap and consume nematodes are an important part of the subsoil ecosystem and they share a special predator-prey relationship. Four nematode-trapping species, there with adhesive network, Arthrobotrys oligospora, A. sinensis, A. thaumasia and one with constricting ring, Drechslerella brochopaga were collected from soils in Korea and tested their predacity against 12 different nematode species. They were three feeding groups, plant-parasitic (Meloidogyne incognita and Pratylenchus penetrans), fungivorous (Aphelenchus avenae), bacteriovorous (Betlerius sp. and Diplogasteritus sp. in diplogasterid, Panagrolaimus labiatus, P. multidentatus in panagrolaimid, Mesorhabditis irregularis, Pelodera strongyloides and Rhabditis sp., in rhabditid, and Acrobeloides sp. in cephalobid). Results showed that nematode-trapping fungi successfully captured most of nematodes in Petri dish in the group of plant-parasitic nematodes and rhabditids, moderately and variably in other nematodes in 15 days. But it didn't captured A. avenae and Acrobeloides sp. both belongs to c-p group 2. Numbers of Acrobeloides sp. and A. avenae even increased during the test period. The results of this study indicated that nematode-trapping fungi may have specificity among nematode species.

선충 포식성곰팡이는 유기물에서 번식하다가 양분이 부족해지면 특수 기관을 형성하여 선충을 포획하고 선충으로부터 양분을 섭취하기 때문에 토양 내 동물계와 먹이사슬을 이루며 생태계에서 중요한 부분을 차지한다. 본 연구에서는 끈끈이그물형 포식기관을 가진 3종, Arthrobotrys oligospora, A. sinensis, A. thaumasia과 수축성올가미형 포식기관을 가진 Drechslerella brochopaga 1종 등 4종의 선충 포식성곰팡이의 식세균성선충 9종, 식균성선충 1종, 식물기생성선충 2종 등 총 12종의 선충류에 대한 포식력을 검정하였다. 4종의 포식성곰팡이에 모두 감수성인 선충은 식물기생성선충 2종류(Meloidogyne incognita, Pratylenchus penetrans), Rhabditidae에 속하는 P. strongyloides, Mesorhabditis irregularis이었고 접종 4일 후부터 선충을 포식하였으며, 선충 내부로 곰팡이가 번식하여 15일째에는 거의 선충의 형태를 알아볼 수 없을 정도였다. 반면, Cephlobidae에 속하는 Acrobeloides spp., A. avenae는 4종의 포식성곰팡이에 모두 저항성을 보였으며 15일 후 관찰하였을 때, 접종배지 내에 선충 수가 초기접종 밀도와 같거나 오히려 2-3배 정도까지 번식되었다. 나머지 선충 종들은 포식성곰팡이 종류에 따라 감수성에 다소간 차이가 있었다. 본 연구결과, 선충 포식성곰팡이가 선충 종에 따라 특이적으로 반응하였으며 이러한 기주특이성을 이용하여 식물기생성선충의 친환경적 방제를 위한 하나의 수단으로 이용될 수 있다.

Keywords

References

  1. Barron, G. L. 1977. The Nematode-Trapping Fungi. Canadian Biological Publications, Guelph, ON, Canada. 140 pp.
  2. Bongers, T. and Bongers, M. 1998. Functional diversity of nematodes. Appl. Soil Ecol. 10: 239-251. https://doi.org/10.1016/S0929-1393(98)00123-1
  3. Bouwman, L. A., Hoenderboom, G. H. J., van der Maas, K. J. and de Ruiter, P. C. 1996. Effects of nematophagous fungi on numbers and death rates of bacterivorous nematodes in arable soil. J. Nematol. 28: 26-35.
  4. Bridge, J. and Starr, J. L. 2007. Plant Nematodes of Agricultural Importance: A Color Handbook. Academic Press, Boston, Ma, USA. 152 pp.
  5. Cayrol, J. C. 1983. Biological control of Meloidogyne by Arthrobotrys irregularis. Rev. Nematol. 6: 265-273.
  6. Chaudhuri, J., Parihar, M. and Pires-daSilva, A. 2011. An introduction to worm lab: from culturing worms to mutagenesis. J. Vis. Exp. 47: 2293.
  7. Cooke, R. C. and Satchuthananthavale, V. 1968. Sensitivity to mycostasis of nematode-trapping hyphomycetes. Trans. Br. Mycol. Soc. 51: 555-561. https://doi.org/10.1016/S0007-1536(68)80025-7
  8. Dobbs, C. G. and Hinson, W. H. 1953. A widespread fungistasis in soils. Nature 172: 197-199. https://doi.org/10.1038/172197a0
  9. Ferris, H., Eyre M., Venette, R. C. and Lau, S. S. 1996. Population energetics of bacterial-feeding nematodes: stage-specific development and fecundity rates. Soil Biol. Biochem. 28: 271-280. https://doi.org/10.1016/0038-0717(95)00127-1
  10. Ferris, H., Venette, R. C. and Lau, S. S. 1997. Population energetics of bacterial-feeding nematodes: carbon and nitrogen budget. Soil Biol. Biochem. 29: 1183-1194. https://doi.org/10.1016/S0038-0717(97)00035-7
  11. Freckman, D. W., Duncan, D. A. and Larson, J. R. 1979. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32: 418-422. https://doi.org/10.2307/3898550
  12. Fresenius, G. 1852. Contributions to Mycology. 2nd ed. Heinrich Ludwig Brommer Verlag, Frankfurt. 80 pp.
  13. Galper, S. Smith, L. J., Eden, L. M. and Stirling, G. R. 1995. Simple screening methods for assessing the predacious activity of nematode-trapping fungi. Nematologica 41: 130-140. https://doi.org/10.1163/003925995X00107
  14. Gaspard, J. T. and Mankau, R. 1987. Density-dependence and host-specificity of the nematode-trapping fungus Monacrosporium elipsosporum. Rev. Nematol. 10: 241-246.
  15. Griffiths, B. S., Young, I. M. and Boag, B. 1991. Nematodes associated with the rhizosphere of barley (Hordeum vulgare). Pedobiolonia 35: 265-272.
  16. Hastuti, L. D. S. and Faull, J. 2018. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode Meloidogyne incognita on deli tobacco (Nicotiana tabaccum l) cv. deli 4. Earth Environ. Sci. 130: 012009.
  17. Hayes, W. A. and Blackburn, F. 1966. Studies on nutrition of Arthrobotrys oligospora Fres., and A. robusta Dudd: the predacious phase. Ann. Appl. Biol. 58: 51-60. https://doi.org/10.1111/j.1744-7348.1966.tb05070.x
  18. Hsueh, Y. P., Mahanti, P., Schroeder, F. C. and Sternberg, P. W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23: 83-86. https://doi.org/10.1016/j.cub.2012.11.035
  19. Kim, D. G., Lee, J. K., Lee, Y. K., Choi, Y. C. and Kim, Y. K. 1997. Description on five species of Arthrobotrys (Corda) Schenck, Kendrick & Pramer in Korea and their key. RDA. J. Crop Prot. 39: 33-41. (In Korean)
  20. Kiontke K. and Fitch, D. H. A. 2013. Nematodes. Curr. Biol. 23: R862-R864. https://doi.org/10.1016/j.cub.2013.04.034
  21. Linford, M. B. 1937. Stimulated activity of natural enemies of nematodes. Science 85: 123-124. https://doi.org/10.1126/science.85.2196.123
  22. Linford, M. B., Yap, F. and Oliveira, J. M. 1938. Reduction of soil populations of the root-knot nematode during decomposition of organic matter. Soil Sci. 45: 127-142. https://doi.org/10.1097/00010694-193802000-00004
  23. Luc, M., Bridge, J. and Sikora, R. A. 2005. Reflection on nematology in subtropical and tropical agriculture. In: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, eds. by M. Luc, R. A. Sikora and J. Bridge, pp. 1-10. CABI, Egham, UK.
  24. Mankau, R. 1962. Soil fungistasis and nematophagous fungi. Phytopathology 52: 611-615.
  25. Moody, E. H., Lownsbery, B. F. and Ahmed, J. M. 1973. Culture of the root-lesion nematode Pratylenchus vulnus on carrot disks. J. Nematol. 5: 225-226.
  26. Nordbring-Hertz, B. 2004. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora: an extensive plasticity of infection structures. Mycologist 18: 125-133. https://doi.org/10.1017/S0269915X04003052
  27. Nordbring-Hertz, B. and Mattiasson, B. 1979. Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281: 477-479. https://doi.org/10.1038/281477a0
  28. Pelagatti, O. and Piccolo, A. 1990. Further considerations on the use of R 350 with a base of Arthrobotrys irregularis. Redia 73: 229-242.
  29. Pramer, D. and Stoll, N. R. 1959. Nemin: a morphogenic substance causing trap formation by predacious fungi. Science 129: 966-967. https://doi.org/10.1126/science.129.3354.966
  30. Rosenzweig, W. D., Premachandran, D. and Pramer, D. 1985. Role of trap lectins in the specificity of nematode capture by fungi. Can. J. Microbiol. 31: 693-695. https://doi.org/10.1139/m85-131
  31. Sasser, J. N. and Freckman, D. W. 1987. A world perspective on mematology: the role of the society. In: Vistas on Nematology, eds. by J. A. Veech and D. W. Dickson, pp. 7-14. Society of Nematologists, Hyattsville, MD, USA.
  32. Saxena, R. C., Jilani, G. and Kareem, A. 1989. Effects of neem on stored grain insects. In: Focus on Phytochemical Pesticides, The Neem Tree, ed. by M. Jacobson, pp. 97-112. CRC Press, Boca Raton, FL, USA.
  33. Stirling G. R. and Mani, A. 1995. The activity of nematode-trapping fungi following their encapsulation in alginate. Nematologica 41: 240-250. https://doi.org/10.1163/003925995X00206
  34. Timper, P. 2014. Conserving and enhancing biological control of nematodes. J. Nematol. 46: 75-89.
  35. Tunlid, A., Jansson, H.-B. and Nordbring-Hertz, B. 1992. Fungal attachment to nematodes. Mycol. Res. 96: 401-412. https://doi.org/10.1016/S0953-7562(09)81082-4
  36. von Reuss, S. H., Bose, N., Srinivasan, J., Yim, J. J., Judkins, J. C., Stemerg, P. W. et al. 2012. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134: 1817-1824. https://doi.org/10.1021/ja210202y