• Title/Summary/Keyword: 비틀림 각

Search Result 189, Processing Time 0.032 seconds

Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.

Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.

Vibration analysis of rotating blades considering the cross section taper, the pre-twist angle, and the setting angle (단면 테이퍼, 초기 비틀림각, 그리고 장착 각의 영향을 고려한 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.288-295
    • /
    • 2009
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and orientation angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena is also investigated and discussed in this work.

  • PDF

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

Vibration Analysis of a Rotating Blade Considering Pre-twist Angle, Cross Section Taper and a Concentrated Mass (초기 비틀림 각과 단면 테이퍼 그리고 집중질량을 갖는 회전하는 블레이드의 진동해석)

  • Kim, Hyung Yung;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.338-346
    • /
    • 2013
  • Equations of motion of a rotating blade considering pre-twist angle, cross section taper and a concentrated mass are derived using the hybrid deformation variable modeling method. For the modeling of a concentrated mass which is located at an arbitrary position of the blade, a Dirac delta function is employed for the mass density function. The final equations for the vibration analysis are transformed into a dimensionless form using several dimensionless parameters. The effects of the dimensionless parameters on the vibration characteristics of the rotating blade are investigated through numerical analysis.

The influence of iatrogenic mobilization in the initial stage of implant installation on final osteointegration (임플란트 식립 초기 의원성 동요가 최종 골결합에 미치는 영향)

  • Kwak, Myeong-Bae;Cho, Jin-Hyun;Lee, Du-Heong;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • Purpose: The aim of present investigation was to find out the influence of several times iatrogenic mobilization in the initial stage of implant installation on bone-implant osteointegration. Materials and methods: The experimental implants (3.75 mm in diameter, 8.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P) on lower 4.0 mm part. Only lower part of implant was inserted to bone and the implants were nonsubmerged. The 130 implants (two in each tibia) were inserted into the monocortical tibias of 33 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 13 groups, group I (1 day), group II (1 day + 2 days), group III (1 day + 2 days + 3 days), group IV (1 day + 2 days + 3 days + 4 days), group V (2 days), group VI (2 days + 4 days), group VII (2 days + 4 days + 6 days), group VIII (2 days + 4 days + 6 days + 8 days), group IX (4 days), group X (4 days + 7 days), group XI (4 days + 7 days + 10 days), group XII (4 days + 7 days + 10 days + 14 days) and control group. In the control group, the removal torque was measured at 8 weeks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once, twice, three times or four times by experiment design before the final removal torque and the value was measured each time. The implants were then screwed back to their original positions. All the experimental groups were given a final healing time of 8 weeks after placement, in which values were compared with the control groups and the 1st, 2nd, 3rd or 4th removal torque values in each experimental group. Results: In comparison of the final removal torque tests among experimental groups, the removal torque value of experimental groups except group XII were not statistically different that of control group. And the values of group I and II were significantly higher than the values of group VI, VIII, X, XI, and XII. In addition, the values of group III, IV, and V were significantly higher than group XI and XII. In comparison of the removal torque in the each experimental group, the final removal torque were significantly higher in all groups except group VIII, X, XI, and XII. Conclusion: If sufficient healing time was allowed, a few mobilization of fixture at the very early stage after the implant placement in the rabbits didn't interrupt the final bone to implant osseointegration.