• Title/Summary/Keyword: 비선형발육모형

Search Result 23, Processing Time 0.034 seconds

Temperature-dependent Development Model of White Backed Planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae) (흰등멸구 [Sogatella furcifera (Horvath)] 온도 발육 모델)

  • Park, Chang-Gyu;Kim, Kwang-Ho;Park, Hong-Hyun;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.133-140
    • /
    • 2013
  • The developmental times of the immature stages of Sogatella furcifera (Horvath) were investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, $35{\pm}1^{\circ}C$), 20~30% RH, and a photoperiod of 14:10 (L:D) h. Eggs were successfully developed on each tested temperature regimes except $12.5^{\circ}C$ and its developmental time was longest at $15^{\circ}C$ (22.5 days) and shortest at $32.5^{\circ}C$ (5.5 days). Nymphs successfully developed to the adult stage from $15^{\circ}C$ to $32.5^{\circ}C$ temperature regimes. Developmental time was longest at $15^{\circ}C$ (51.9 days) and it was decreased with increasing temperature up to $32.5^{\circ}C$ (9.0 days). The relationships between developmental rate and temperature were fitted by a linear model and seven nonlinear models (Analytis, Briere 1, 2, Lactin 2, Logan 6, Performance and modified Sharpe & DeMichele). The lower threshold temperature of egg and total nymphal stage was $10.2^{\circ}C$ and $12.3^{\circ}C$ respectively. The thermal constant required to complete egg and nymphal stage were 122.0 and 156.3 DD, respectively. The Briere 1 model was best fitted ($r^2$= 0.88~0.99) for all developmental stages, among seven nonlinear models. The distribution of completion of each development stage was well described by three non-linear models (2-parameter, 3-parameter Weibull and Logistic) ($r^2$= 0.91~0.96) except second and fifth instar.

Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns (옥수수에서 기장테두리진딧물의 온도 의존적 발육과 산자 특성)

  • Park, Jeong Hoon;Kwon, Soon Hwa;Kim, Tae Ok;Oh, Sung Oh;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.149-160
    • /
    • 2016
  • Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.

Development Time and Development Model of the Green Peach Aphid, Myzus persicae (복숭아혹진딧물(Myzus persicae)의 발육과 발육모형)

  • Kim Ji-Soo;Kim Tae-Heung
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.305-310
    • /
    • 2004
  • The development of Myzus persicae (Sulzer) was studied at temperatures ranging from 15 to $32.5^{\circ}C$ under $70{\pm}5\%$ RH, and a photoperiod of 16:8 (L:D). Mortality of 1st-2nd nymph was higher than that of 3rd-4th nymph at the most temperature ranges whereas at high temperature of $32.5^{\circ}C$, more 3-4nymph stage individuals died. The total developmental time ranged from 12.4 days at $15^{\circ}C$ to 4.9 days at $27.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher end temperature ranges of 30 and $32.5^{\circ}C$, the development took 5.0 and 6.3 days, respectively. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $4.9^{\circ}C$ and 116.5 day-degrees. The nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with pre-nymph, post-nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.87 and 0.94.

Parameterization of the Temperature-Dependent Development of Panonychus citri (McGregor) (Acari: Tetranychidae) and a Matrix Model for Population Projection (귤응애 온도발육 매개변수 추정 및 개체군 추정 행렬모형)

  • Yang, Jin-Young;Choi, Kyung-San;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.235-245
    • /
    • 2011
  • Temperature-related parameters of Panonychus citri (McGregor) (Acarina: Tetranychidae) development were estimated and a stage-structured matrix model was developed. The lower threshold temperatures were estimated as $8.4^{\circ}C$ for eggs, $9.9^{\circ}C$ for larvae, $9.2^{\circ}C$ for protonymphs, and $10.9^{\circ}C$ for deutonymphs. Thermal constants were 113.6, 29.1, 29.8, and 33.4 degree days for eggs, larvae, protonymphs, and deutonymphs, respectively. Non-linear development models were established for each stage of P. citri. In addition, temperature-dependent total fecundity, age-specific oviposition rate, and age-specific survival rate models were developed for the construction of an oviposition model. P. citri age was categorized into five stages to construct a matrix model: eggs, larvae, protonymphs, deutonymphs and adults. For the elements in the projection matrix, transition probabilities from an age class to the next age class or the probabilities of remaining in an age class were obtained from development rate function of each stage (age classes). Also, the fecundity coefficients of adult population were expressed as the products of adult longevity completion rate (1/longevity) by temperature-dependent total fecundity. To evaluate the predictability of the matrix model, model outputs were compared with actual field data in a cool early season and hot mid to late season in 2004. The model outputs closely matched the actual field patterns within 30 d after the model was run in both the early and mid to late seasons. Therefore, the developed matrix model can be used to estimate the population density of P. citri for a period of 30 d in citrus orchards.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.

Temperature-dependent Development Model of Hawaiian Beet Webworm Spoladea recurvalis Fabricius (Lepidoptera: Pyraustinae) (흰띠명나방의 온도발육 모형)

  • Lee, Sang-Ku;Kim, Ju;Cheong, Seong-Soo;Kim, Yeon-Kook;Lee, Sang-Guei;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The Hawaiian beet webworm (Spoladea recurvalis) is one of the serious insect pests found on red beet (Beta vulgaris var. conditiva) in Korea. The study was conducted to investigate the development period of S. recurvalis at various constant temperatures, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5 and $35.0^{\circ}C$, with $65{\pm}5%$ RH and a photoperiod of 16L:8D. The developmental period from egg to pre-adult was 51.0 days at $17.5^{\circ}C$ and 14.6 days at $35.0^{\circ}C$. The developmental period of S. recurvalis was decreased with increasing temperature. The relationship between the developmental rate and temperature was fitted well by linear regression analysis ($R^2{\geq}0.87$). The lower developmental threshold and effective accumulative temperature of the total immature stage were $10.4^{\circ}C$ and 384.7 degree days, respectively. The nonlinear relationship between the temperature and developmental rate was well described by the Lactin model. The relationship between the cumulative frequency and normalized distributions of the developmental period for each life stage were fitted to the Weibull function with $R^2=0.63{\sim}0.87$.

Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant (감자수염진딧물(Macrosiphum euphorbiae Thomas)의 온도발육모형과 출산생명표)

  • Jeon, Sung-Wook;Kim, Kang-Hyeok;Lee, Sang Guei;Lee, Yong Hwan;Park, Se Keun;Kang, Wee Soo;Park, Bueyong;Kim, Kwang-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.568-578
    • /
    • 2019
  • The nymphal development of the potato aphid, Macrosiphum euphorbiae (Thomas), was studied at seven constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, and 27.5±1℃), 65±5% relative humidity (RH), and 16:8 h light/dark photoperiods. The developmental investigation of M. euphorbiae was separated into two steps, the 1st through 2nd and the 3rd through 4th stages. The mortality was under 10% at six temperatures. However, it was 53.0% at 27.5℃. The developmental time of the entire nymph stage was 15.5 days at 15.0℃, 6.7 days at 25.0℃, and 9.7 days at 27.5℃. In the immature stage, the lower threshold temperature of the larvae was 2.6℃ and the thermal constant was 144.5 DD. In our analysis of the temperature-development experiment, the Logan-6 model equation was most appropriate for the non-linear regression models (r2=0.99). When the distribution completion model of each development stage of M. euphorbiae larvae was applied to the 2-parameter and 3-parameter Weibull functions, each of the model's goodness of fit was very similar (r2=0.92 and 0.93, respectively). The adult longevity decreased as the temperature increased but the total fecundity of the females at each temperature was highest at 20℃. The life table parameters were calculated using the whole lifespan periods of M. euphorbiae at the above six temperatures. The net reproduction rate (R0) was highest at 20.0℃(63.2). The intrinsic rate of increase (rm) was highest at 25℃(1.393). The finite rate of doubling time (Dt) was the shortest at 25.0℃(2.091). The finite rate of increase (λ) was also the highest at 25.0℃(1.393). The mean generation time(T) was the shortest at 25.0℃(9.929).

Relationship between Temperature and Egg Development of Nannophya pygmaea Rambur (Odonata: Libellulidae), an Endangered Dragonfly in Korea (한국의 멸종위기종인 꼬마잠자리(Nannophya pygmaea Rambur: 잠자리과, 잠자리목) 알의 발육과 온도의 관계)

  • Kim, Dong-Gun;Hwang, Jeong-Mi;Yoon, Tae-Joong;Bae, Yeon-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.3
    • /
    • pp.292-296
    • /
    • 2009
  • This study was conducted to estimate relationship between temperature and egg development of Nannophya pygmaea, an endangerd dragonfly species in Korea, using eight different temperature conditions (17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$). Eggs of N. pygmaea were collected from female adults inhabited a small wetland in Mungyeong-si, Gyeongsangbuk-do, Korea, in June 2007. As a result, hatching rates were 2.86, 17.09, 24.32, 39.67, 34.43, 40.57, 44.79, and 1.75% at 17, 20, 22, 25, 28, 30, 33, and $36^{\circ}C$, respectively. The nonlinear model of the temperature related to egg development was well fit to the modified Sharpe and DeMichele model. The derived lower developmental threshold temperature for egg hatching was $14.02^{\circ}C$(y=0.005988x-0.084, $r^2$=0.99), and the derived optimal development temperature was $30{\sim}35^{\circ}C$.

Development of an Emergence Model for Overwintering Eggs of Metcalfa pruinosa (Hemiptera: Flatidae) (미국선녀벌레(Metcalfa pruinosa) (Hemiptera: Flatidae) 월동난 부화 예측 모델 개발)

  • Lee, Wonhoon;Park, Chang-Gyu;Seo, Bo Yoon;Lee, Sang-Ku
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The temperature-dependent development of Metcalfa pruinosa overwintering eggs was investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}1^{\circ}C$, Relative Humidity 20~30%). All individuals collected before April 13, 2012 failed to develop into first instar larvae. In contrast, some individuals that were collected on April 11, 2013 successfully developed when reared under $20{\sim}32.5^{\circ}C$ temperature regimes. The developmental duration was shortest at $30^{\circ}C$ (13.3 days) and longest at $15^{\circ}C$ (49.6 days) in the fourth collected colony (April 26 2013). Developmental duration decreased with increasing temperature up to $30^{\circ}C$ and development was retarded at high-temperature regimes ($32.5^{\circ}C$). The lower developmental threshold was $10.1^{\circ}C$ and the thermal constant required to complete egg overwintering was 252DD. The Lactin 2 model provided the best statistical description of the relationship between temperature and the developmental rate of M. pruinosa overwintering eggs ($r^2=0.99$). The distribution of the developmental completion of overwintering eggs was well described by the 2-parameter Weibull function ($r^2=0.92$) based on the standardized development duration. However, the estimated cumulative 50% spring emergence dates of overwintering eggs were best predicted by poikilotherm rate model combined with the 2-parameter Weibull model (average difference of 1.7days between observed and estimated dates).