DOI QR코드

DOI QR Code

감자수염진딧물(Macrosiphum euphorbiae Thomas)의 온도발육모형과 출산생명표

Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant

  • 전성욱 (농촌진흥청 국립농업과학원) ;
  • 김강혁 (무주농업기술센터) ;
  • 이상계 (농촌진흥청 국립농업과학원) ;
  • 이용환 (농촌진흥청 국립농업과학원) ;
  • 박세근 (농촌진흥청 국립농업과학원) ;
  • 강위수 (농촌진흥청 국립농업과학원) ;
  • 박부용 (농촌진흥청 국립농업과학원) ;
  • 김광호 (농촌진흥청 국립농업과학원)
  • 투고 : 2019.10.02
  • 심사 : 2019.11.26
  • 발행 : 2019.12.31

초록

감자수염진딧물(Macrosiphum euphorbiae)의 온도별 발육은 12.5~27.5℃까지 2.5℃ 간격(상대습도 65±5%, 광주기 16L : 8D), 7개 온도조건에서 1~2령, 3~4령의 2단계로 구분하여 조사하였다. 약충의 사망률은 7개 온도 중 6개 온도에서 10% 미만이었으나, 27.5℃에서 사망률은 53.0%였다. 온도별 발육기간은 15.0℃에서 15.5일, 25.0℃에서는 6.7일로 고온으로 갈수록 발육기간은 짧아졌으나, 27.5℃에서는 발육기간이 다시 길어져 9.7일이었다. 약충의 발육 영점온도는 2.6℃였고, 유효적산온도는 144.5일도였다. 약충의 발육을 5가지 비선형발육모형에 적용한 결과 Logan6(r2=0.99) 모형이 발육에 적합하였고, 발육완료분포모형은 2-Weibull과 3-Weibull의 모형 적합성(r2)이 각각 0.92와 0.93으로 유사하였다. 성충 수명과 산자 수에서 성충 수명은 온도가 증가함에 따라 짧아지는 경향을 보였고, 산자수는 20.0℃에서 64.4개로 가장 많은 산자를 생산하였다. 생명표분석에서 순증가율(R0)은 20.0℃에서 63.2로 가장 컸고, 내적자연증가율(rm)은 25.0℃에서 1.393로 가장 컸다. 배수증가기간(Dt)은 25.0℃에서 2.091로 가장 짧았다. 기간자연증가율(λ)은 25℃에서 가장 컸고(1.393), 평균세대기간(T)은 25℃에서 9.929로 가장 짧았다.

The nymphal development of the potato aphid, Macrosiphum euphorbiae (Thomas), was studied at seven constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, and 27.5±1℃), 65±5% relative humidity (RH), and 16:8 h light/dark photoperiods. The developmental investigation of M. euphorbiae was separated into two steps, the 1st through 2nd and the 3rd through 4th stages. The mortality was under 10% at six temperatures. However, it was 53.0% at 27.5℃. The developmental time of the entire nymph stage was 15.5 days at 15.0℃, 6.7 days at 25.0℃, and 9.7 days at 27.5℃. In the immature stage, the lower threshold temperature of the larvae was 2.6℃ and the thermal constant was 144.5 DD. In our analysis of the temperature-development experiment, the Logan-6 model equation was most appropriate for the non-linear regression models (r2=0.99). When the distribution completion model of each development stage of M. euphorbiae larvae was applied to the 2-parameter and 3-parameter Weibull functions, each of the model's goodness of fit was very similar (r2=0.92 and 0.93, respectively). The adult longevity decreased as the temperature increased but the total fecundity of the females at each temperature was highest at 20℃. The life table parameters were calculated using the whole lifespan periods of M. euphorbiae at the above six temperatures. The net reproduction rate (R0) was highest at 20.0℃(63.2). The intrinsic rate of increase (rm) was highest at 25℃(1.393). The finite rate of doubling time (Dt) was the shortest at 25.0℃(2.091). The finite rate of increase (λ) was also the highest at 25.0℃(1.393). The mean generation time(T) was the shortest at 25.0℃(9.929).

키워드

참고문헌

  1. AliNiazee MT. 1976. Thermal unit requirements for determining adult emergence of the western cherry fruit fly (Diptera: Tephritidae) in the Willamatte Valley of Oregon. Environ. Entomol. 5:397-401. https://doi.org/10.1093/ee/5.3.397
  2. Barlow CA. 1962. The influence of temperature on the growth of experimental populations of Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) (Aphididae). Can. J. Zool. 40:145-156. https://doi.org/10.1139/z62-019
  3. Birch LC. 1948. The Intrinsic Rate of Natural Increase of an Insect Population. Zool. Dep. Univ. Syd. Press. Australia. pp. 15-26.
  4. Briere JF and P Pracros. 1998. Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ. Entomol. 27:94-101. https://doi.org/10.1093/ee/27.1.94
  5. Briere JF, P Pracros, AY Le Roux and JS Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28:22-29. https://doi.org/10.1093/ee/28.1.22
  6. Butts RA and FL McEwen. 1981. Seasonal populations of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), in relation to day-degree accumulation. Can. Entomol. 113:127-131. https://doi.org/10.4039/Ent113127-2
  7. Campbell A, BD Frazer, N Gilbert, AP Gutierrez and M Markauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438. https://doi.org/10.2307/2402197
  8. Chan CK, AR Forbes and DA Raworth. 1991. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Tech. Bull. 3E:1-216.
  9. Curry GL, RM Feldman and KC Smith. 1978a. Astochastic model of a temperature-dependent population. Theor. Popul. Biol. 13:197-213. https://doi.org/10.1016/0040-5809(78)90042-4
  10. Curry GL, RM Feldman and PJH Sharpe. 1978b. Foundation of stochastic development. J. Theor. Biol. 74:397-410. https://doi.org/10.1016/0022-5193(78)90222-9
  11. De Conti BF, VH Paes Bueno, MV Sampaio and JC Van Lenteren. 2011. Development and survival of Aulacorthum solani, Macrosiphum euphorbiae and Uroleucon ambrosiae at six temperatures. Bull. Insec. 64:63-68.
  12. Eckenrode CK and RK Chapman. 1972. Seasonal adult cabbage maggot populations in the field in relation to thermal unit accumulations. Ann. Entomol. Soc. Am. 65:151-156. https://doi.org/10.1093/aesa/65.1.151
  13. Hahm YI and JK Choi. 1990. The virus detection of viruliferous aphid caught alive on a yellow trap for Potato Leafroll Virus in Daekwallyeong area. Korean J. Plant Pathol. 6:382-386.
  14. Houser JS, TL Guyton and PR Lowry. 1917. The pink and green aphid of potato. Ohio Agric. Exp. Stn. Bull. 317:60-88.
  15. Jeon SW, MR Jo, YP Kim, SG LEE, SH Kim, J Yu, JJ Lee and CY Hwang. 2011. Temperature-dependent development model of the striped fruit fly, Bactrocera scutellata (Hendel) (Diptera: Tephritidae). Korean J. Appl. Entomol. 50:373-378. https://doi.org/10.5656/KSAE.2011.11.0.61
  16. Kazino Y. 1976. Influence of temperature on the development and reproduction of Macrosiphum euphorbiae (tomas). Bull. Hokkaido Pref. Agric. Exp. 35:64-69.
  17. Kennedy JS, MF Day and VF Eastop. 1962. A Conspectus of Aphids as Vectors of Plant Viruses. Commonw. Inst. Ent. London, UK.
  18. Kim DI, DS Chio, SJ Ko, BR Kang, CG Park, SG Kim, JD Park and SS Kim. 2012. Comparison of development times of Myzus persicae (Hemiptera: Aphididae) between the constant and variable temperatures and its temperature and its development models. Korean J. Appl. Entomol. 51:431-438. https://doi.org/10.5656/KSAE.2012.10.0.032
  19. Kim JS, YH Kim, TH Kim, JH Kim, YW Byeon and KH Kim. 2004. Temperature-dependent development and its model of the melon aphid, Aphis gossypii Glover (Homoptera: Aphididae). Korean J. Appl. Entomol. 43:111-116.
  20. Kim JS and TH Kim. 2004. Development time and development model of the green peach aphid, Myzus persicae. Korean J. Appl. Entomol. 43:305-310.
  21. Kim SH, KH Kim, CY Hwang, JR Lim, KH Kim and SW Jeon. 2014. Life table analysis of the cabbage aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese cabbages. Korean J. Appl. Entomol. 53:449-456. https://doi.org/10.5656/KSAE.2014.11.0.058
  22. Kwon M, CS Park and YI Hahm. 1997. Occurrence pattern of insect pests on several varieties of potato. Korean J. Appl. Entomol. 36:145-149.
  23. Kwon M, DC Chang and YJ Ahn. 2008. Infestation of potato cultivars by potato aphid, Macrosiphum euphorbiae Thomas, and its infestation-related factors. Korean J. Appl. Entomol. 47:193-199. https://doi.org/10.5656/KSAE.2008.47.3.193
  24. Lactin DJ, NJ Holliday, DI Johnson and R Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24:68-75. https://doi.org/10.1093/ee/24.1.68
  25. Lee JH, TH Kim, CY Hwang and SG Lee. 2007. Temperature-dependent development and its model of the greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae). Korean J. Appl. Entomol. 46:213-219. https://doi.org/10.5656/KSAE.2007.46.2.213
  26. Logan JA, DJ Wolkind, SC Hoyt and LK Tanigoshi. 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140. https://doi.org/10.1093/ee/5.6.1133
  27. Maia AHN, AJB Luiz and C Campanhola. 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93:511-518. https://doi.org/10.1603/0022-0493-93.2.511
  28. Manzer FE, DC Merriam, RH Storch and JWM Simpson. 1982. Effect of time inoculation with potato leaf-roll virus on potato tubers. Am. Potato J. 59:347-349.
  29. Meyer JS, CG Igersoll, LL MacDonald and MS Boyce. 1986. Estimating uncertainty in population growth rates: Jackknife vs bootstrap techniques. Ecology 67:1156-1166. https://doi.org/10.2307/1938671
  30. Park CG, HH Park, KB Uhm and JH Lee. 2010a. Temperature-dependent development model of Paromius exiguus (Distant) (Heteroptera: Lygaeidae). Korean J. Appl. Entomol. 49:305-312. https://doi.org/10.5656/KSAE.2010.49.4.305
  31. Park CG, HY Kim and JH Lee. 2010b. Parameter estimation for a temperature -dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 13:145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  32. Radcliffe EB and DW Ragsdale. 2002. Aphid-transmitted potato viruses: The importance of understanding vector biology. Am. J. Potato Res. 79:353-386. https://doi.org/10.1007/BF02870173
  33. SAS Institute. 2016. SAS Enterprise version 7.1, Institute Cary, N.C.
  34. Salazar LF. 1996. Potato Viruses and Their Control. International Potato Center, Lima. p. 214.
  35. Schoolfield RM, PJH Sharpe and CE Mugnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 66:21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  36. Sharpe PJH, GL Carry, DW DeMichele and CL Cole. 1977. Distribution model of organisms development times. J. Theor. Biol. 66:21-38. https://doi.org/10.1016/0022-5193(77)90309-5
  37. Wagner TL, H Wu, PJH Sharpe and RN Coulson. 1984a. Modeling distribution of insect development time: A literature review and application of Weibull function. Ann. Entomol. Soc. Am. 77:475-487. https://doi.org/10.1093/aesa/77.5.475
  38. Wagner TL, H Wu, PJH Sharpe, RM Schoolfield and RN Coulson. 1984b. Modeling insect development rate: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77:208-225. https://doi.org/10.1093/aesa/77.2.208
  39. Walgenbach JF. 1997. Effect of potato aphid (Homoptera: Aphididae) on yield, quality, and economics of staked-tomato production. J. Econ. Entomol. 90:996-1004. https://doi.org/10.1093/jee/90.4.996
  40. Walker GP. 1982. The dispersion and abundance of the potato aphid (Macrosiphum euphorbiae (Thomas)) on tomato (Lycopersicon esculentum Mill.). PhD. dissertation, Ohio State Univ. Ann Arbor, MI.
  41. Whalon ME and Z Smilowitz. 1979. Temperature -dependent model for predicting field populations of green peach aphid Myzus persicae (Homoptera: Aphididae). Can. Entomol. 111:1025-1032. https://doi.org/10.4039/Ent1111025-9