Browse > Article
http://dx.doi.org/10.5656/KSAE.2015.12.0.064

Development of an Emergence Model for Overwintering Eggs of Metcalfa pruinosa (Hemiptera: Flatidae)  

Lee, Wonhoon (Animal and Plant Quarantine Agency)
Park, Chang-Gyu (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Seo, Bo Yoon (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Lee, Sang-Ku (Crop protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Publication Information
Korean journal of applied entomology / v.55, no.1, 2016 , pp. 35-43 More about this Journal
Abstract
The temperature-dependent development of Metcalfa pruinosa overwintering eggs was investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}1^{\circ}C$, Relative Humidity 20~30%). All individuals collected before April 13, 2012 failed to develop into first instar larvae. In contrast, some individuals that were collected on April 11, 2013 successfully developed when reared under $20{\sim}32.5^{\circ}C$ temperature regimes. The developmental duration was shortest at $30^{\circ}C$ (13.3 days) and longest at $15^{\circ}C$ (49.6 days) in the fourth collected colony (April 26 2013). Developmental duration decreased with increasing temperature up to $30^{\circ}C$ and development was retarded at high-temperature regimes ($32.5^{\circ}C$). The lower developmental threshold was $10.1^{\circ}C$ and the thermal constant required to complete egg overwintering was 252DD. The Lactin 2 model provided the best statistical description of the relationship between temperature and the developmental rate of M. pruinosa overwintering eggs ($r^2=0.99$). The distribution of the developmental completion of overwintering eggs was well described by the 2-parameter Weibull function ($r^2=0.92$) based on the standardized development duration. However, the estimated cumulative 50% spring emergence dates of overwintering eggs were best predicted by poikilotherm rate model combined with the 2-parameter Weibull model (average difference of 1.7days between observed and estimated dates).
Keywords
Metcalfa pruinosa; Overwintering egg; Temperature-dependent development; Model; Forecasting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, Y.Y., Kim, M.Y., Hong, K.J., Lee, S.W., 2011. Outbreak of an exotic flatid, Metcalfa pruinosa (Say) (Hemiptera: Flatidae), in the capital region of Korea. J. Asia Pac. Entomol. 14, 473-478.   DOI
2 Lactin, D.J., Holliday, N.J., Johnson, D.I., Craigen, R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.   DOI
3 Lee H., Wilson, S.W.,. 2010. First report of the nearctic flatid planthopper Metcalfa pruinosa (Say) in the Republic of Korea (Hemiptera: Fulgoroidea). Entomological News 121, 506-513.   DOI
4 Logan, J.A., Wollkind, D.J., Hoyt, S.C., Tanigoshi, L.K., 1976. An analytical model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5, 1133-1140.   DOI
5 Lucchi, A., 1994. The egg-burster of the flatid planthopper Metcalfa pruinosa (Say) (Homoptera, Fulgoroidea). Proceedings of Entomological Society of Washington 96(3), 548-552.
6 Mead, F.W., 1969. Citrus flatid planthopper, Metcalf purinosa (Say) Homoptera: Flatidae. Florida Department of Agriculture, Division of Plant Industry, Entomology Circular No. 85. 2pp.
7 Schoolfield, R.M., Sharpe, P.J.H., Mugnuson, C.E., 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88, 719-731.   DOI
8 Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649-670.   DOI
9 Strauss, G., 2010. Pest risk analysis of Metcalfa pruinosa in Austraia. J. Pest Sci. 83, 381-390.   DOI
10 SYSTAT software inc., 2002. TableCurve 2D Automated curve fitting analysis: version 5.01. Systat software. inc. San Jose, CA.
11 Wagner, T.L., Wu, H., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling distribution of insect development time: a literature review an application of Weibull function. Ann. Entomol. Soc. Am. 77, 475-487.   DOI
12 Wilson, S.W., Lucchi, A., 2000. Aspetti sistematici, corologici, ecologici. In: Lucci, A. (Ed.), La Metcalfa negli ecostemi italiani. ARSIA Regione Toscana, Firenze, Italy, pp 13-28.
13 Wilson, S.W., Lucchi, A., 2001. Distribution and ecology of Metcalfa pruinosa and associated planthoppers in North America (Homoptera: Fulgoroidea). Attidell'Accad. Nazionale Ital. Entomolo., Rendiconti Anno XLIX: 121-130.
14 Alma, A., Ferracini, C., Burgio, G., 2005., Devemlopment of a sequential plan to evaluate Neodryinus typhlocybae (Ashmead) (Hymenoptera: Dryinidae) population associated with Metcalfa pruinosa (Say) (homoptera: Flatidae) infestation in Northwestern Italy. Envion. Entomol. 34, 819-824.   DOI
15 Akotsen-Mensah, C., Boozer, R.T., Appel, A.G., Fadamiro, H.Y., 2011. Seasonal occurrence and development of degree-day models for predicting activity of Conotrachelus nenuphar (Coleoptera: Curculionidae) in Alabama peaches. Ann. Entomol. Soc. Am. 104, 192-201.   DOI
16 Bagnoli, B., Lucchi, A., 2000. Dannosita e misure di controllo integrato. In: Lucchi, A. (Ed.) La Metcalfa negli ecostemi italiani. ARSIA Regione Toscana, Firenze, Italy, pp 65-88.
17 Blomefield, T.L., Giliomee, J.H., 2014. Validation of the phenology model for the codling moth, Cydia pomonella (Lepidoptera: Tortricidae), in South African pome fruit orchards. Afr. Entomol. 22, 30-48.   DOI
18 Briere, J.F., Pracros, P., Le Roux, A.Y., Pierre, J.S., 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22-29.   DOI
19 CABI. 2007. Crop Protection Compendium (internet access at http://www.cabicompendium.org/cpc/ (Sept. 9. 2010))
20 Campbell, A., Frazer, B.D, Gilbert, N., Gutierrez, A.P., Markauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431-438.   DOI
21 Ciampolini, M., dal Pane, M., Scaglia, M., 1995. Metcalfa pruinosa: piu problemi nella difesa delle colture frutticole. L'Inf. Agar. 51, 67-72.
22 Curry, G.L., Feldman, R.M., Sharpe, P.J.H., 1978. Foundations of stochastic development. J. Theor. Biol. 74, 397-410.   DOI
23 Dean H.H., Bailey, J.C., 1961. A flatid planthopper, Metcalf pruinosa. J. Econ. Entomol. 54, 1104-1106.   DOI
24 Evans, E.W., Carlile, N.R., Innes, M.B., Pitigala, N., 2014. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: Long-term patterns. J. Econ. Entomol. 107, 240-249.   DOI
25 Flint, M.L., Gouveia, P., 2001. IPM in practice: principles and methods of integrated pest management. University of California Press, Oakland, CA.
26 Johnson, J.B., Omland, K. S., 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101-108.   DOI