Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.05.0.015

Temperature-dependent Development and Fecundity of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on Corns  

Park, Jeong Hoon (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University)
Kwon, Soon Hwa (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University)
Kim, Tae Ok (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University)
Oh, Sung Oh (Major of Plant Resources Science and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University)
Kim, Dong-Soon (The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University)
Publication Information
Korean journal of applied entomology / v.55, no.2, 2016 , pp. 149-160 More about this Journal
Abstract
Temperature-dependent development and fecundity of apterious Rhopalosiphum padi (L.) (Hemiptera: Aphididae) were examined at six constant temperatures (10, 15, 20, 25, 30 and $35{\pm}1.0^{\circ}C$, RH 50-70%, 16L:8D). Development time of nymphs decreased with increasing temperature and ranged from 42.9 days at $10^{\circ}C$ to 4.7 days at $30^{\circ}C$. The nymphs did not develop until adult at $35^{\circ}C$ because the nymphs died during the 2nd instar. The lower threshold temperature and thermal constant of nymph were estimated as $8.3^{\circ}C$ and 101.6 degree days, respectively. The relationships between development rates of nymph and temperatures were well described by the nonlinear model of Lactin 2. The distribution of development times of each stage was successfully fitted to the Weibull function. The longevity of apterious adults decreased with increasing temperature ranging from 24.0 days at $15^{\circ}C$ to 4.3 days at $30^{\circ}C$, with abnormally short longevity of 11.1 days at $10^{\circ}C$. R. padi showed the highest fecundity at $20^{\circ}C$ (38.2) and the lowest fecundity at $10^{\circ}C$ (3.9). In this study, we provided component sub-models for the oviposition model of R. padi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate as well as adult aging rate based on the adult physiological age.
Keywords
Rhopalosiphum padi; Oviposition rate; Physiological age; Longevity; Model; Parameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asin, L., Pons, X., 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environ. Entomol. 30, 1127-1134.   DOI
2 Auad, A.M., Alves, S.O., Carvalho, C.A., Silva, D.M., Resende, T.T., Verissimo, B.A., 2009. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphidiade) fed with signal grass. Fla. Entomol. 92, 568-576.
3 Bale, J.S., Ponder, K.L., Pritchard, J., 2007. Coping with stress, pp. 287-309. In: H.F. Van Emden, R. Harrington (Eds.), Aphids as crop pests. CAB International, Wallingford, UK.
4 Blackman, R.L., Eastop, V.F., 1985. Aphids on the world's crops: An identification guide, John Wiley & Sons, England, pp. 341-342.
5 Choi, K.S., Kim, D.-S., 2016. Effect of temperature on the fecundity and longevity of Ascotis selenaria (Lepidoptera: Geometridae): developing an oviposition model. J. Econ. Entomol. 2016. 1-6 doi: 10.1093/jee/tow029.   DOI
6 Curry, G.L., Feldman, R.M., 1987. Mathematical foundations of population dynamics. The Texas A&M University Press.
7 Descamps, L.R., Chopa, C.S., 2011. Population growth of Rhopalosiphum padi L. (Homoptera: Aphididae) on different cereal crops from the semiarid pampas of Argentina under laboratory conditions. Chil. J. Agr. Res. 71, 390-394.   DOI
8 Eastop, V.F., 1983. The biology of the principle virus vectors, in: Plumb, R.T., Thresh, J.M. (Eds.), Plant virus epidemiology. Blackvell Scientific Publication, Oxford, pp. 115-132.
9 Emden van H.F., Harrington, R., 2007. Aphids as Crop Pests. CABI, USA.
10 Erying, H., 1935. The activated complex in chemical reactions. J. Chem. Physics 3, 107-115.   DOI
11 Frazier, M.R., Huey, R.B., Berrigan, D., 2006. Thermodynamics constrains the evolution of insect population growth rates: "Warmer is better". Am. Nat. 168, 512-520.   DOI
12 Ikemoto, T., Takai, K., 2000. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 29, 671-682.   DOI
13 Jandel Scientific, 2002. Tabel curve 2D. Automated curve fitting and equation discovery; version 4.0. Dandel Scientific, San Rafel, CA.
14 Kim, H.-J., 2008. A Systematic study of the tribe Aphidini (Hemiptera: Aphididae) in the Korean peninsula, with discussion of their phylogenetic relationships based on molecular markers and morphology. Seoul National University, Doctor Thesis.
15 Kim, D.-S., Lee, J-H., Yiem, M.S. 2001. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae), and its stage emergence models. Environ. Entomol. 30, 298-305.   DOI
16 Kim D.-S., Lee J.-H., 2003. Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Eco. Model. 162, 145-153.   DOI
17 Kim, D.-S., Choi, K.S., Jang, Y.S., Song, J.H., 2009. The effects of elevated temperatures on the population phenology and abundance of citrus pests in Jeju, Korea. International Symposium on Climate Change and Insect Pest, Ramada Plaza Jeju Hotel, Jeju, Republic of Korea. pp. 28-30.
18 Korea Biodiversity Information System (KBIS), N.D. Distribution map of Rhopalosiphum padi in Korea. http://www.nature.go.kr/kbi/insct/pilbk/selectInsctDistrList.do (accessed on 5 March, 2016).
19 Lactin, D.J., Holliday, N.J., Johnson, D.L., Craigen R., 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24, 68-75.   DOI
20 Lee, K.H., Shin, W.H., Kim, J.H., Lee, J.W., 1996. Mass rearing technology of Aphidus Colemani viereck (Hymenoptera: Aphidiidae) using Rhopalosiphum padi as a host aphid. Proceeding of KSAE (Korean Society of Applied Entomology) in 1996 (Autumn), pp. 65 (in Korean with title translated into English by the authors).
21 Lee, R.E. Jr., 1991. Principle of insect low temperature tolerance, In: Lee, R.E. Jr., Denlinger, D.L. (Eds.), Insects at low temperature. Chapman and Hall, New York and London, pp. 17-46.
22 Ma, G., Hoffmann, A.A., Ma, C.-S. 2015. Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Bio. 218, 2289-2296.   DOI
23 Macfadyen, S., Kriticos, D.J., 2012. Modelling the geographical range of a species with variable life-history. PLoS One 7(7), e40313. doi:10.1371/journal.pone.0040313.   DOI
24 MAFF., 1982. Reference Book 186. Cereal pests. HMSO, London. 124 pp.
25 Powell, S.J., Bale, J.S., 2005. Low temperature acclimatd population of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. J. Exp. Bio. 208, 2615-2620.   DOI
26 SAS Institute, 1999 SAS $OnlinDoc^{(R)}$. Versin 8, SAS Institute Inc., Cary, NC. USA.
27 Sengonca, V.C., Hoffmann, A., Kleinhenz, B., 1994. Laboruntersuchungen zur entwicklung, lebensdauer und fruchtbarkeit der getreideblattlausarten Sitobion avenae (F.) und Rhopalosiphum padi (L.) (Horn., Aphididae) bei verschiedenen tieferen temperaturen. J. Appl. Ent. 117, 224-233.   DOI
28 Song, J.H., Kang, S.H., Lee, K.S., Yiem, S.O., Han, W.T., 2000. Survey for the pest of major crops on Jeju Island. Final research report of Cheju Provincial Institute for Agricultural Research (in Korean with title translated into English by the authors).
29 Villanueva, B., J.R., Strong, F.E., 1964. Laboratory Studies on the Biology of Rhopalosiphum padi (Homoptera: Aphidae). Ann. Entomol. Soc. Am. 57, 609-613.   DOI
30 Taheri, S., Razmjou, J., Rastegari, N., 2010. Fecundity and development rate of the bird cherry-oat Aphid, Rhopalosiphum padi (L) (Hom.: Aphididae) on six wheat cultivars. Plant Protect. Sci. 46, 72-78.   DOI
31 Wagner, T.L., WU, H.-I., Sharpe, P.J.H., Coulson, R.N., 1984. Modeling Distributions of Insect Development Time: A Literature Review and Application of the Weibull Function. Ann. Entomol. Soc. Am. 77, 475-487.   DOI
32 Weibull, W.A., 1951. Statistical distribution function of wide applicability. J. Appl. Mech. 18, 293-196.