• Title/Summary/Keyword: 비례추론 전략

Search Result 15, Processing Time 0.029 seconds

Proportional Reasoning Strategy of Pre-service Elementary Teachers (초등예비교사의 비례추론 과제에 대한 전략 분석)

  • Choi, Eunah
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.601-625
    • /
    • 2016
  • In this study, I hoped to reveal the understanding of pre-service elementary teachers about proportional reasoning and the traits of proportional reasoning strategy used by pre-service elementary teachers. The results of this study are as follows. Pre-service elementary teachers should deal with various proportional reasoning tasks and make a conscious effort to analyze proportional reasoning task and investigate various proportional reasoning strategies through teacher education program. It is necessary that pre-service elementary teachers supplement the lacking tasks such as qualitative reasoning and distinction between proportional situation and non-proportional situation. Finally, It is suggested to preform the future research on teachers' errors and mis-conceptions of proportional reasoning.

An Analysis of Proportional Reasoning of Elementary School Students - Focused on Sixth Graders - (초등학생들의 비례 추론 전략 분석 -6학년을 중심으로-)

  • Jung, Yoo Kyung;Chong, Yeong Ok
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.457-484
    • /
    • 2015
  • This study aims to investigate an approach to teach proportional reasoning in elementary mathematics class by analyzing the proportional strategies the students use to solve the proportional reasoning tasks and their percentages of correct answers. For this research 174 sixth graders are examined. The instrument test consists of various questions types in reference to the previous study; the proportional reasoning tasks are divided into algebraic-geometric, quantitative-qualitative and missing value-comparisons tasks. Comparing the percentages of correct answers according to the task types, the algebraic tasks are higher than the geometric tasks, quantitative tasks are higher than the qualitative tasks, and missing value tasks are higher than the comparisons tasks. As to the strategies that students employed, the percentage of using the informal strategy such as factor strategy and unit rate strategy is relatively higher than that of using the formal strategy, even after learning the cross product strategy. As an insightful approach for teaching proportional reasoning, based on the study results, it is suggested to teach the informal strategy explicitly instead of the informal strategy, reinforce the qualitative reasoning while combining the qualitative with the quantitative reasoning, and balance the various task types in the mathematics classroom.

The Analysis of 6th-Grade Elementary School Student's Proportional Reasoning Ability and Strategy According to Academic Achievement (학업성취도에 따른 초등학교 6학년 학생들의 비례 추론 능력 및 전략 분석)

  • Eom, Sun-Young;Kwean, Hyuk-Jin
    • Communications of Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.537-556
    • /
    • 2011
  • This paper focuses on proportional reasoning being emphasized in today's elementary math, and analyzes the way students use their proportional reasoning abilities and strategies according to their academic achievement levels in solving proportional problems. For this purpose, various types of proportional problems were presented to 173 sixth-grade elementary school students and they were asked to use a maximum of three types of proportional reasoning strategies to solve those problems. The experiment results showed that upper-ranking students had better ability to use, express and perceive more types of proportional reasoning than their lower-ranking counterparts. In addition, the proportional reasoning strategies preferred by students were shown to be independent of academic achievement. But there was a difference in the proportional reasoning strategy according to the types of the problems and the ratio of the numbers given in the problem. As a result of this study, we emphasize that there is necessity of the suitable proportional reasoning instruction which reflected on the difference of ability according to student's academic achievement.

An Analysis on the Proportional Reasoning Understanding of 6th Graders of Elementary School -focusing to 'comparison' situations- (초등학교 6학년 학생들의 비례 추론 능력 분석 -'비교' 상황을 중심으로-)

  • Park, Ji Yeon;Kim, Sung Joon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.105-129
    • /
    • 2016
  • The elements of mathematical processes include mathematical reasoning, mathematical problem-solving, and mathematical communications. Proportion reasoning is a kind of mathematical reasoning which is closely related to the ratio and percent concepts. Proportion reasoning is the essence of primary mathematics, and a basic mathematical concept required for the following more-complicated concepts. Therefore, the study aims to analyze the proportion reasoning ability of sixth graders of primary school who have already learned the ratio and percent concepts. To allow teachers to quickly recognize and help students who have difficulty solving a proportion reasoning problem, this study analyzed the characteristics and patterns of proportion reasoning of sixth graders of primary school. The purpose of this study is to provide implications for learning and teaching of future proportion reasoning of higher levels. In order to solve these study tasks, proportion reasoning problems were developed, and a total of 22 sixth graders of primary school were asked to solve these questions for a total of twice, once before and after they learned the ratio and percent concepts included in the 2009 revised mathematical curricula. Students' strategies and levels of proportional reasoning were analyzed by setting up the four different sections and classifying and analyzing the patterns of correct and wrong answers to the questions of each section. The results are followings; First, the 6th graders of primary school were able to utilize various proportion reasoning strategies depending on the conditions and patterns of mathematical assignments given to them. Second, most of the sixth graders of primary school remained at three levels of multiplicative reasoning. The most frequently adopted strategies by these sixth graders were the fraction strategy, the between-comparison strategy, and the within-comparison strategy. Third, the sixth graders of primary school often showed difficulty doing relative comparison. Fourth, the sixth graders of primary school placed the greatest concentration on the numbers given in the mathematical questions.

5th and 6th Grade Korean Students' Proportional Reasoning Abilities (초등학교 5학년과 6학년의 비례 추론 능력 분석)

  • Chong, Yeong Ok;Jung, Yoo Kyung
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.819-838
    • /
    • 2016
  • This research analyzed proportional reasoning abilities of the 5th grade students who learned only the basis of ratio and rate and 6th grade students who also learned proportion and cross product strategy. Data were collected through the proportional reasoning tests and the interviews, and then the achievement of the students and their proportional reasoning strategies were analyzed. In the light of such analytical results, the conclusions are as follows. Firstly, there is not much difference between 5th and 6th grade students in the achievement scores. Secondly, both 5th and 6th graders are less familiar with the geometric, qualitative and comparisons tasks than the other tasks. Thirdly, not only 5th graders but also 6th graders used informal strategies much more than the formal strategy. Fourthly, some students can't come up with other strategies than the cross product strategy. Finally, many students have difficulties in discerning proportional situation and non-proportional situations. This study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: focusing on letting students use their informal strategies fluently in geometric, qualitative, and comparisons tasks as well as algebraic, quantitative, and missing value tasks focusing on the concept of ratio and proportion instead of enforcing the formal strategy.

Teaching Proportional Reasoning in Elementary School Mathematics (초등학교에서 비례 추론 지도에 관한 논의)

  • Chong, Yeong Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.21-58
    • /
    • 2015
  • The aim of this study is to look into the didactical background for teaching proportional reasoning in elementary school mathematics and offer suggestions to improve teaching proportional reasoning in the future. In order to attain these purposes, this study extracted and examined key ideas with respect to the didactical background on teaching proportional reasoning through a theoretical consideration regarding various studies on proportional reasoning. Based on such examination, this study compared and analyzed textbooks used in the United States, the United Kingdom, and South Korea. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: giving much weight on proportional reasoning, emphasizing multiplicative comparison and discerning between additive comparison and multiplicative comparison, underlining the ratio concept as an equivalent relation, balancing between comparisons tasks and missing value tasks inclusive of quantitative and qualitative, algebraic and geometrical aspects, emphasizing informal strategies of students before teaching cross-product method, and utilizing informal and pre-formal models actively.

The relationship between the students' strategy types and the recognition for proportional situations (학생들의 문제해결전략 유형과 비례상황 인지와의 관계)

  • Park, Jung-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2008
  • The purpose of this research was to investigate the relationship between the students' strategy types and the recognition for proportional situations. The students' strategy types which were based on the results of ratio and proportion tests were divided into an additive type, a multiplicative type, and a formal type. This research analyzed the students' activities of categorization when were given the proportional problems and nonproportional problems to the students. And it also explored how to develop students' recognizing for the discrimination between the proportional situations and nonproportional situations. The results was the following. First, the students didn't discriminate the proportional situations and the nonproportional situations in the initial state but they came to discriminate little by little. Secondly, the students didn't discriminate the direct proportions and the inverse proportions until the last stage. Third, the multiplicative type was outperformed more than the formal type in solving the ratio and proportion problems but the formal type was outperformed more than the multiplicative type in discriminating between proportional situations and nonproportional situations. These results are interpreted as showing that solving ratio and proportion tasks and recognizing proportional situations are different aspects of proportional reasoning and it is necessary to understand multiplicative strategy with formal strategy in recognizing proportional situations.

  • PDF

An Analysis of Elementary School Students' Informal Knowledge In Proportion (초등학생의 비례에 관한 비형식적 지식 분석)

  • Park, Sang-Eun;Lee, Dae-Hyun;Rim, Hae-Kyung
    • Communications of Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.345-363
    • /
    • 2010
  • The purpose of this study is to investigate and analyze informal knowledge of students who do not learn the conception of proportion and to identify how the informal knowledge can be used for teaching the conception of proportion in order to present an effective method of teaching the conception. For doing this, proportion was classified into direct and inverse proportion, and 'What are the informal knowledge of students?' were researched. The subjects of this study were 117 sixth-graders who did not have prior learning on direct and inverse proportion. A total eleven problems including seven for direct proportion and four for inverse proportion, all of them related to daily life. The result are as follows; Even though students didn't learn about proportion, they solve the problems of proportion using informal knowledge such as multiplicative reasoning, proportion reasoning, single-unit strategy etc. This result implies mathematics education emphasizes student's informal knowledge for improving their mathematical ability.

A study on the Sixth Graders' Solving Proportional problems in the 7th curriculum Mathematics Textbooks (초등학교 6학년의 교과서 비례 문제 해결에 관한 연구)

  • Kwon, Mi-Suk;Kim, Nam-Gyun
    • Education of Primary School Mathematics
    • /
    • v.12 no.2
    • /
    • pp.117-132
    • /
    • 2009
  • The purpose of this study was analysis on types of strategies and errors when the sixth grade students were solving proportion problems of mathematics textbooks. For this study, proportion problems in mathematics textbooks were investigated and 17 representative problems were chosen. The 277 students of two elementary schools solved the problems. The types of strategies and errors in solving proportion problems were analyzed. The result of this study were as follows; The percentage of correct answers is high if the problems could be solved by proportional expression and the expression is in constant rate. But the percentage of correct answers is low, if the problems were expressed with non-constant rate.

  • PDF

A Study on the Proportional Reasoning Instruction for Elementary School Children (초등학생의 비례적 추론 지도에 관한 연구)

  • Kim, Kyoung-Seon;Park, Young-Hee
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.447-466
    • /
    • 2007
  • Math education in schools have to enable students to understand the importance of math and nurture the capacity to resolve various problems in daily life with reasoning, which is therefore, always applicable to the actual world. Proportional reasoning capacity is being often used in daily life, and some kind of unit is not fixed. So students are considering it very difficult. This study looks into the difficulties that students have in proportional reasoning, what kind of problem solving strategy is being used, what the problems are in current textbooks, etc. Based on this, it tried to check the concept changes in students' proportional reasoning by developing the instruction program for 'proportional expression' unit in the 6th grade. Based on the results, this study analyzes the features of proportional reasoning instruction programs and the instruction results. Also it analyzes in-advance & after examination papers of the experimental class and comparison class to contribute to the instruction method and instruction contents improvement of 'proportional expression' unit.

  • PDF