• Title/Summary/Keyword: 변형률 요소

Search Result 702, Processing Time 0.029 seconds

마찰특성이 미소절삭기구에 미치는 영향에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.166-171
    • /
    • 1993
  • 절삭공구에의한 절삭가공은 오늘날 가장 보편화된 가공기술중의 하나이다. 그런데, 최근들어 각종 첨단산업의발전과 함께 초정밀 부품제작이 필수선결 조건으로 부상하고 있으며, 이에대한 해결방안중의 하나로 초정밀가공 기 술로 크게 대두되고 있다. 최근 컴퓨터 기술의 발달에 따라 구조해석분야의 해석방법론의 개발 및 보완에 힘입어 Klemecki(1973)에 의해유한요소법을 이용한 Chip생성기구 해석에 관한 연구가수행되었으며, Stevenson(1983) 등에의해단열조 건하에서 변형률과 온도 상태에서의 Chip형상, 잔류응결-변형율에 대한 연구가 이루어졌다. 본 연구에서는 유한요소법을 이용하여 미소절삭기구를 모델링하고, 절삭인자규명을 중심으로 응력-변형률 해석을 실시함으로써, 미소절삭시의 Chip 생성기구 및 전단면 생성 원리, 공구와 Chip간의 마찰기구의 고찰을 통해기본 Mechanism 이해와 적절한 절삭유한요소모델 제시의 기초자료로 삼고자 한다. 특히 본 보고서에서는 미소 절삭기구의 적정한 Constitutive Deformation Law 마찰계수 등 주요절삭인자변경에 따른 미소절삭기구 해석에 주안점을 두어 연구한 결과를 기술하였다.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Linear Static and Free Vibration Analysis of Laminated Composite Plates and Shells using a 9-node Shell Element with Strain Interpolation (변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석)

  • 최삼열;한성천
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.279-293
    • /
    • 2004
  • The analysis of linear static and free vibration problems of isotropic and laminated composite plates and shells is performed by the improved 9-node shell element with the new strain displacement relationship. In that relationship, the effect of new additional terms between the bending strain and displacement has been investigated in the warping problem. Natural co ordinate based strains, stresses and constitutive equations are used. The assumed natural strain method is used to alleviate both membrane and shear locking behavior from the element. The Lanczos method is employed in the calculation of the eigenvalues of laminated composite structures and the Gauss integration rule is adopted to evaluate the mass matrix. The numerical examples are compared with the analytical solutions to validate the current formulation and the results presented could be useful for the understanding of the behaviour of laminates under free vibration conditions.

Development of Nonlinear Triangular Planar Element Based on Co-rotational Framework (Co-rotational 이론 기반 비선형 삼각평면 유한요소의 개발)

  • Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.485-490
    • /
    • 2015
  • This paper presents development of a geometrically nonlinear triangular planar element including rotational degrees of freedom, based on the co-rotational(CR) formulation. The CR formulation is one of the efficient geometrically nonlinear formulations and it is based on the assumptions on small strain and large rotation. In this paper, modified CR formulation is suggested for the developemnt of a triangular planar element. The present development is validated regarding the static and time transient problems. The present results are compared with the results predicted by the previous researchers and those obtained by the existing commercial software.

A study for Variation of Consolidation Behavior by Analysis Method (해석기법에 따른 압밀거동 변화에 관한 연구)

  • Chung, Youn-In;Kim, Min-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • In this study, finite element analysis is performed for consolidation behavior prediction of drainage-installed soft deposits. Finite element analysis is performed under the two strain conditions as small strain with limited application and large strain for relatively thick layers, large deformation and non-linear material properties. The analysis conditions such as layer depth, loading conditions, smear effects are also changed and variation of consolidation behavior for each condition is estimated from ABAQUS program.

Development of an Assumed Strain Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 가정된 변형률 쉘 요소 개발)

  • Kim, Ki-Du;Song, Sak Suthasupradit;Hwang, Hyun-Jin;Park, Jae-Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.108-117
    • /
    • 2010
  • The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, the different jacking forces are required in the inner and outer webs. And it is impossible to calculate different jacking forces in the inner and outer webs if we use the frame element for construction stage analysis. In order to overcome this problem, the use of shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of an assumed strain shell element and its application of PSC box girder bridge analysis are presented.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Analyzing Method of Deformation of Model Ground in Plane Strain (평면변형율 상태에 있는 모형지반의 변형해석법)

  • 임종철;주인곤
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 1992
  • One of the most important things to analyze model ground test in plane strain is to observe deformation, accurately, In this paper, the analyzing method of ground deformation by using photos of points on membrane attached on transparent acryle plate of side wall of model ground box is described. First order 4-node isoparametric elements are used to calculate strains of ole cents.

  • PDF

A Study on the Anti-impulsive Strength of the Helmets for a Gas Industry (가스산업용 안전모의 내충격 안전성에 관한 연구)

  • Kim, Chung Kyun;Kim, Tae Whan
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2013
  • In this study, the strain energy density, stress and deformation behaviors have been analyzed as functions of a thickness and a force area of protective helmets with and without an extruder on the top of the shell structure using the finite element method. The strain energy density in which is related to the absorption capacity of an impact energy transfer is one of a key element of the helmet safety. The FEM analyzed results show that when the impulsive force of 4,540N is applied on the top surface of the helmets, the maximum stress is linearly reduced for an increased area of impact forces. But, the maximum strain energy density has been reduced for the increased force area. The reduced strain energy density may increase the impulsive forces transferred to the head and neck of helmet wearers, which may decrease the impact energy absorption safety of the helmets. In thus, it is safer design of the helmet in which has an extruded structure on the summit surface, but the modified helmet may decrease the impact energy absorption capacity.

Failure Prediction for Composite Materials under Flexural Loading (굽힘 하중에 의한 복합재료 파손 예측 연구)

  • Kim, Jin-Sung;Roh, Jin-Ho;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1013-1020
    • /
    • 2017
  • In this study, the failure prediction of composite laminates under flexural loading is investigated. A FEA(finite element analysis) using 2D strain-based interactive failure theory. A pregressive failure analysis was applied to FEA for stiffness degradation with failure mode each layer. A three-point bending test based on the ASTM D790 are performed for cross-ply $[0/90]_8$ and quasi-isotropic $[0/{\pm}45/90]_{2s}$ laminated composites. The accuracy of the applied failure theory is verified with the experimental results and other failure criteria such as maximum strain, maximum stress and Tsai-Wu theories.