Browse > Article
http://dx.doi.org/10.11112/jksmi.2010.14.3.108

Development of an Assumed Strain Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge  

Kim, Ki-Du (건국대학교 사회환경시스템공학과)
Song, Sak Suthasupradit (건국대학교 사회환경기스템공학과)
Hwang, Hyun-Jin (건국대학교 사회환경기스템공학과 대학원)
Park, Jae-Gyun (단국대학교 토목환경공학과)
Publication Information
Journal of the Korea institute for structural maintenance and inspection / v.14, no.3, 2010 , pp. 108-117 More about this Journal
Abstract
The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, the different jacking forces are required in the inner and outer webs. And it is impossible to calculate different jacking forces in the inner and outer webs if we use the frame element for construction stage analysis. In order to overcome this problem, the use of shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of an assumed strain shell element and its application of PSC box girder bridge analysis are presented.
Keywords
Assumed Strain Shell Element; PSC Bridge; Three Dimensional Construction Stage Analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Marı, E. Mirambell, I. Estrada, "Effects of Construction Process and Slab Prestressing on the Serviceability Behaviour of Composite Bridges", Journal of Constructional Steel Research 59, 2003, pp.135-163.   DOI   ScienceOn
2 Kim K. D., Lomboy G. R. and Voyiadjis G. Z., "A 4-Node Assumed Strain Quasi-Conforming Shell Element with 6 D.O.F", International Journal for Numerical Methods in Engineering, Vol. 58, Issue 14, 2003. December, pp. 2177-2200.   DOI   ScienceOn
3 Maekawa, K., Pimanmas, A., and Okamura, H, "Nonlinear Mechanics of Reinforced Concrete", Spon Press, 2003.
4 Shi, G., and Voyiadjis, G. Z., "Geometrically Nonlinear Analysis of Plates by Assumed Strain Element with Explicit Tangent Stiffness Matrix". Computers and Structures. Vol. 41, 1991, pp.757-763.   DOI   ScienceOn
5 Songsak S., "Development of a Nonlinear Enhanced Assumed Strain Shell Element for Bridge Analysis", doctor thesis, Konkuk University, Korea, 2008.
6 Kim K. D., Voyiadjis George Z., "Non-linear Finite Element Analysis of Composite Panels", Composites Part B: Engineering, Vol. 30, Iss 4, 1999, pp.383-394.   DOI   ScienceOn
7 J. C. Simo and J. G. Kennedy, "On a Stress resultant geometrically exact shell model Part V: Nonlinear Plasticity: Formulation and Integration Algorithm", Compt. Methods Appli. Mech. Engrg. Vol. 96, 1992, pp.133-171.   DOI   ScienceOn
8 XFINAS, Nonlinear structural dynamic analysis system, School of Civil Engineering, Konkuk University, 2009.
9 SAP2000, INTEGRATED SOFTWARE FOR STRUCTURAL ANALYSIS & DESIGN, /www.csiberkeley.com.
10 Kim K.D., "Large Displacement of Elasto-Plastic Analysis of Stiffened Plates and Shells using Corotational 8-Node Assumed Strain Element", Structural Engineering and Mechanics, An International Journal, Vol. 15, No. 2, 2003, pp.199-223.   DOI
11 Kim K. D., Lomboy G. R. and Han S. C., "A corotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells". Comput. Mech., Vol. 30, No. 4, 2003, pp.330-342.   DOI   ScienceOn
12 Kupfer, H. B. and Gerstle, K. H., "Behavior of Concrete Under Biaxial Stresses", Journal of the Engineering Mschanics Division, ASCE, No. EM4, 1973. Agust.
13 Dvorkin E. N. and Bathe K. J., "A Continuum Mechanics Based Four-Node Shell Element for General Non-Linear Analysis", Eng. Comput., Vol. 1, 1984, pp.77-88.   DOI
14 Andelfinger U and Ramm E, "EAS-elements for twodimensional, three dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Engng., Vol. 36, 1993, pp.1311-1337.   DOI   ScienceOn
15 Bates D. N., "The Mechanics of Thin Walled Structures with Special Reference to Finite Rotations", Ph. D. Thesis, Dept. of Civil Engineering, Imperial College. 1987.
16 Crisfield M.A, "On an approximate yield criterion for thin steel shell". Internal report, Crowthorne, Berkshire TRR, 1974.
17 Simo J. C. and Kennedy J. G., "On a Stress resultant geometrically exact shell model Part V: Nonlinear Plasticity: Formulation and Integration Algorithm", Compt. Methods Appli. Mech. Engrg., Vol. 96, 1992, pp.133-171.   DOI   ScienceOn
18 Kebari H. and Cassel A. C., "A Stabilized 9-node Non-linear Shell Element", Int. J. Num. Meth. Eng, 35, 1992, pp.37-61.   DOI
19 김기두, 한성천, "대체변형률 쉘 요소를 이용한 적층 복합판 및 쉘의 점탄성적 후좌굴 해석", 대한토목학회 논문집, 제23 권 제2-A호, 2003, pp.259-270.
20 곽효경, "철근콘크리트와 프리스트레스트 콘크리트 보의 시간 의존적 거동해석", 대한토목학회 논문집, Vol. 14, No. 1, 1994, pp.1-12.
21 박찬민, 강영진, "시공단계를 고려한 곡선 변단면 프리스트레스크 콘크리트 박스거더교량의 해석", 대한토목학회논문집, 제14권 1호, 1994, pp.71-81.
22 이재석, 최규천, "PSC 뼈대의 3차원 비선형 해석을 위한 화이버 모델 요소", 한국전산구조공학회 가을학술발표회 논문집, 2003, pp.195-201.
23 Ahmad S., Irons B. M. and Zienkiewicz O.C. 5 "Analysis of Thick and Thin Shell Structures by Curved Finite Elements", Int. J. Numer. Meth. Engng., Vol. 2, 1970, pp.419-451.   DOI
24 Ali R. Khaloo, M. Kafimosavi, "Enhancement of Flexural Design of Horizontally Curved Prestressed Bridges". Journal of Bridge Engineering. Vol. 12, No. 5, 2007, pp.585-590.   DOI   ScienceOn