• Title/Summary/Keyword: 변위의존성

Search Result 75, Processing Time 0.027 seconds

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

Finite Element Analysis of Reinforced Concrete Hollow Columns Using Path-dependent Volume Control Method (경로의존형 체적제어법을 이용한 철근콘크리트 중공 기둥의 유한요소해석)

  • Song, Ha-Won;Nam, Sang-Hyeok;Lim, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2007
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependent behaviors of RC columns subjected to lateral cyclic loading or reversed cyclic loading along with compressive loading. RC shell structures and RC hollow columns are analyzed by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependent volume control method as a finite element analysis technique is verified by comparing analysis results with other data including experimental results. The validity and applicability of the modeling technique is also confirmed by the comparison.

Design Method for Shape Memory Alloy Actuator with Bias Spring (Bias 스프링을 이용한 형상기억합금 액츄에이터의 설계 방법)

  • Lee, Seung-Ki;Na, Seung-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.437-445
    • /
    • 1998
  • The actuator using shape memory alloy spring with bias spring can act as a bidirectional actuator due to the restoring force of the bias spring. In the design of shape memory actuator with bias spring, the required design specifications are the generated force and the necessary stroke. To fulfill these requirements, shape memory alloy spring and bias spring should be designed carefully considering the specified application. In this paper, the novel design method for shape memory alloy actuator with bias spring, which does not require any assumptions from experience, has been proposed and verified by the test of fabricated shape memory alloy actuator. The experimental results show good agreements with calculated values, which guarantees the practical validity of our proposed design method.

  • PDF

Some Theoretical Considerations in Body Tide Calculation (고체지구조석계산에 있어 몇 가지 이론적 고찰)

  • Na, Sung-Ho;Shin, Young-Hong;Baek, Jeong-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • The largest terms in the solid Earth body tide calculation are second degree spherical harmonic components due to the moon or the sun, and they compose about 98 percent of total contribution. Each degree harmonics of the tidal perturbation should be evaluated through multiplication with distinct Love numbers or their combinations. Correct evaluation of these terms in gravity tide is considered with re-calculated Love numbers. Frequency dependence of Love numbers for spherical harmonic tide upon the order number is discussed. Tidal displacement and tidally induced deviation of the vertical are also evaluated. Essential concepts underlying the body tide calculation are briefly summarized.

Dielectric Relaxation Properties of DMPC Organic Thin Films for Nanotechnology (나노기술을 위한 DMPC 유기박막의 유전완화특성)

  • Chol, Young-Il;Cho, Su-Young
    • 전자공학회논문지 IE
    • /
    • v.49 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DMPC using pressure stimulus. As a result, It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area. When electric bias is applied across the manufactured MIM device by the deposition condition of phospolipid monomolecular, it is found that be characteristic of insulation generated it wasn't breakdown when the higher electric field to impress by increase of deposition layers.

Variable Optical Attenuator Incorporating Dual Fiber Collimator and Bi-metal Actuator (이중 광 콜리메터와 바이메탈 엑추에이터를 이용한 가변 광감쇠기)

  • Kim, Kwang Taek;Kim, Duck Bong;Koh, Hanjun
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.28-31
    • /
    • 2018
  • In this paper, we have proposed and demonstrated a variable optical attenuator (VOA) incorporating a dual-fiber collimator and a bimetallic actuator. The optical attenuation between input and output single-mode fibers was tuned by tilting the angle of a reflection mirror fixed on the bimetal. The bimetal was heated or cooled by a thermoelectric cooler (TEC) and then moved the reflection mirror, due to bending and unreeling. The desired optical attenuation can be obtained through adjusting the electrical input into the TEC. The fabricated device showed 0.5 dB of insertion loss, 0.2 dB of maximum polarization-dependent loss, and 40 dB of dynamic range. The response time was measured to be about 5 s.

Qantum Transition properties of Si in Electron Deformation Potential Phonon Interacting Qusi Two Dimensional System (준 2차원 시스템에서 전자 변위 포텐셜 상호 작용에 의한 Si의 양자 전이 특성)

  • Joo, Seok-Min;Cho, Hyun-Chul;Lee, Su-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.502-507
    • /
    • 2019
  • We investigated theoretically the quantum optical transition properties of qusi 2-Dinensinal Landau splitting system, in Si. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on two transition processes, namely, the phonon emission transition process and the phonon absorption transition process. Through the analysis of this work, we found the increasing properties of QTLW and QTLS of Si with the temperature and the magnetic fields. We also found the dominant scattering processes are the phonon emission transition process.

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.73-94
    • /
    • 1998
  • In the present study, a method of the three-dimensional limit equilibrium stability analysis of shape of the potential failure wedge for the concave-shaped excavation corner is assumed on the basis of the results of the FLACSU program analysis. Estimation of the three-dimensional seepage forces expected to act on the failure wedge is made by solving the three-dimensional continuity equation of flow with appropriate boundary conditions. By using the proposed method of three-dimensional stability analysis of the concave-shaped excavation corner, a parametric study is performed to examine the reinforcement effect of skew soil nailing system, range of the efficient skew angles and seepage effect on the overall stability. Also examined is the effect of an existence of the right-angled excavation corner on three-dimensional deflection behaviors of the convex-shaped skew soil nailing walls. The results of analyses of the convexshaped excavation corner with skew soil nailing system is further included to illustrate the effects of various design parameters for typical patterns of skew nails reinforcement system.

  • PDF

Effect of $PbTiO_3$ Concentration on the Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Relaxor Ferroelectrics ($Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ 계 완화형 강유전체의 특성에 미치는 $PbTiO_3$ 첨가량의 변화 -I.유전특성 및 초전특성-)

  • 박재환;흥국선;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.391-398
    • /
    • 1996
  • In order to understand the electrostrictive behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) solid solutions the dielectric constants and the electric-field-induced strains in (1-x)PMN-xPT (x=0.0-0.4) were investigated in the temperature range -5$0^{\circ}C$-20$0^{\circ}C$. Powder of (1-x)Pb(Mg2/3Nb2/3)O3-xPbTiO3 (x=0.0, 0.1, 0.2, 0.3, 0.35, and 0.4) were prepared from the oxide forms of Pb, Mg, Nb and Ti via a columbite precursor method As the amount of PbTiO3 increases the temperature of maximum dielectric constant(T$\varepsilon$max) increases and the phase transition become less diffusive. The strain maximum occurs only when the diffuse phase transition occurs from rhombohedral to cubic or rhombohedral to tetragonal as in x=0.1-0.35 The strains monotonically decrease with temperature in the materials in which phase transition occurs from tetragonal to cubic as in x=0.4.

  • PDF

Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • 변위용;김영상;이승래;정은택
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.17-25
    • /
    • 2004
  • The flat dilatometer test (DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indices - material index $(I_D)$, horizontal stress index $(K_D)$, and dilatometer modulus (E$_{D}$) and the undrained shear strength has been estimated merely using the horizontal stress index $(K_D)$. In this paper, the applicability of the flat dilatometer to Korean soft clay deposit has been investigated. Then an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0, p_1, p_2, {\sigma '}_v$ and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.