DOI QR코드

DOI QR Code

Variable Optical Attenuator Incorporating Dual Fiber Collimator and Bi-metal Actuator

이중 광 콜리메터와 바이메탈 엑추에이터를 이용한 가변 광감쇠기

  • Received : 2017.09.08
  • Accepted : 2018.01.11
  • Published : 2018.02.25

Abstract

In this paper, we have proposed and demonstrated a variable optical attenuator (VOA) incorporating a dual-fiber collimator and a bimetallic actuator. The optical attenuation between input and output single-mode fibers was tuned by tilting the angle of a reflection mirror fixed on the bimetal. The bimetal was heated or cooled by a thermoelectric cooler (TEC) and then moved the reflection mirror, due to bending and unreeling. The desired optical attenuation can be obtained through adjusting the electrical input into the TEC. The fabricated device showed 0.5 dB of insertion loss, 0.2 dB of maximum polarization-dependent loss, and 40 dB of dynamic range. The response time was measured to be about 5 s.

본 논문에서는 이중 광 콜리메터 광학계와 바이메탈 엑추에이터를 이용한 가변 광감쇠기를 제안하고 구현하였다. 입력광섬유와 출력광섬유 사이의 광손실은 바이메탈에 부착된 반사거울의 기울어진 각으로 조절되어진다. 바이메탈은 열전소자(TEC)에 의해 가열되거나 냉각되며 이로 인해 구부림이나 펴짐으로 인하여 반사거울을 움직이게 한다. TEC에 가해지는 전기신호로 원하는 광감쇠량을 얻을 수 있다. 제작된 소자는 0.5 dB의 삽입손실, 0.2 dB의 편광의존성 손실 및 40 dB 이상의 가변변위를 보였다. 반응 시간은 약 5초였다.

Keywords

References

  1. S. S. Lee, Y. S. Jin, and T. K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11, 590-592 (1999). https://doi.org/10.1109/68.759408
  2. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34, 264-265 (1998). https://doi.org/10.1049/el:19980226
  3. C. Marxer, P. Ggriss, and N. F. de Rooij, "A variable optical attenuator based on silicon micromechanics," IEEE Phonton. Technol. Lett. 11, 233-235 (1999). https://doi.org/10.1109/68.740714
  4. N. A. Riza and S. Sumriddetechkajorn, "Digitally controlled fault-tolerant muliwavelength programmable fiber optic attenuator using a two dimensional digital micromirror devices," Opt. Lett. 24, 83-84 (1999). https://doi.org/10.1364/OL.24.000083
  5. V. Morozove, H. Fan, L. Eldada, L. Yang, and Y. Shi, "Fused optic variable attenuator," in Proc. Optical Fiber Communication Conference (USA, Mar. 2000), pp. 22-24.
  6. Q. Li, A. A. Au, C. H. Lin, E. R. Lyons, and H. P. Lee, "An efficient all-fiber variable optical attenuators via acoustooptic mode coupling," IEEE Photon. Technol. Lett. 14, 1563-1565 (2002). https://doi.org/10.1109/LPT.2002.803895
  7. J.-H. Song, D.-H. Kim, H.-M. Gu, H.-J. Park, S.-S. Lee, and I.-J. Cho, "Optical microphon incorporating a reflective micromirror and a dual-core collimator," Korean J. Opt. Photon. 17, 94-98 (2006). https://doi.org/10.3807/KJOP.2006.17.1.094
  8. K. K. How, K. Takeshi, and C. Lee, "Low-voltage driven MEMS VOA using torsional attenuation mechanism based on piezoelectric beam actuators," IEEE Photon. Technol. Lett. 22, 1355-1357 (2010). https://doi.org/10.1109/LPT.2010.2056679
  9. J.-U. Shin, Y.-T. Han, S.-P. Han, S.-H. Park, Y. Baek, Y.-O. Noh, and K.-H. Park, "Reconfigurable optical add-drop multiplexer using a polymer integrated photonic lightwave circuit," ETRI J. 31, 770-777 (2009). https://doi.org/10.4218/etrij.09.1209.0024