• 제목/요약/키워드: 벡터망

검색결과 506건 처리시간 0.028초

변환영역에서의 지능형 분류벡터양자화를 이용한 영상압축 (Image Compression using an Intelligne Classified Vector Quantization Method in Transform Domain)

  • 이현수;공성곤
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.18-28
    • /
    • 1997
  • 이 논문에서는 영상데이터를 여러개의 영상블록들로 나누고 이산 코사인변환 영역에서 물체의 에지에 해당하는 영상블록을 에지방향을 고려하여 적절히 분류함으로써 영상데이터를 효과적을 압축하였다. 벡터양자화에 의한 영상데이터의 압축은 높은 압축률을 실현할 수 있지만 영상내 물체의 에지부근이 손상되어 시각적인 화질이 저하되는 단점이 있다. 높은 압축률을 유지하면서도 시각적인 화질의 열화를 피하기 위하여 영상블록의 이산 코사인변환계수의 에너지 분포에 따라 에지블록을 8개의 부류로 분류하였다. 또한 이 분류과정을 통하여 얻어진 데이터를 가지고 신경회로망을 학습하여 구현한 에지블록의 분류과정과 성능을 비교하였다. 에너지분포에 의한 에지분류방법과 신경망으로 학습한 분류과정은 에지특성벡터에 의한 분류벡터양자화에 비해 더 높은 PSNR과 시각적으로 좋은 화질을 보여주었다.

  • PDF

Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식 (The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors)

  • 최광미;김형균
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1513-1517
    • /
    • 2005
  • 본 논문에서는 얼굴영역을 검출하기위해 얼굴 피부색을 보다 효과적으로 모델링하기 위한 피부색 특성을 고려하여 밝기 성분을 제거한 Red, Blue, Green 채널을 모두 사용하는 Hue, Cb, Cg의 M배i-Channel 피부색 모델을 사용한다. 얼굴영역을 분리한 영상에 Harr 웨이블릿을 이용한 에지영상 추출과 얼굴영역의 특징벡터를 구하기 위하여 26개의 특징벡터를 사용한 효율적인 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

형판 벡터와 신경망을 이용한 감성인식 (Emotion Recognition Using Template Vector and Neural-Network)

  • 주영훈;오재흥
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.710-715
    • /
    • 2003
  • 본 논문에서는 사람의 식별과 감정을 인식하기 위한 새로운 방법을 제안한다. 제안된 방법은 색차 정보에 의한 형판의 위치 인식과 형판 벡터 추출에 기반 한다. 단일 색차 공간만을 이용할 경우 피부색 영역을 정확히 추출하기 힘들다. 이를 보완하기 위해서 여러 가지 색차 공간을 병행하여 피부색 영역을 추출하며, 이를 응용하여 각각의 형판을 추출하는 방법을 제안한다. 그리고, 사람의 식별과 감정 인식을 위해서 추출된 형판에 대한 각각의 특징 벡터를 신경회로망을 이용하여 학습하여 사용한다. 마지막으로, 제안된 방법은 실제 실험을 통하여 그 가능성을 보인다.

목조 문화재 영상에서의 크랙을 감지하기 위한 임베딩 유사도 기반 딥러닝 모델 (An Embedding Similarity-based Deep Learning Model for Detecting Displacement in Cultural Asset Images)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.133-135
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위 현상 중 하나인 크랙이 발생하는 영역을 감지하기 위한 임베딩 유사도 기반 모델을 제안한다. 우선 변위가 존재하지 않는 정상으로만 구성된 학습 이미지는 사전 학습된 합성 곱 신경망을 통과하여 임베딩 벡터들을 추출한다. 그 이후 임베딩 벡터들을 가지고 정상 클래스에 대한 분포의 파라미터 값을 구한다. 실제 추론 과정에 사용되는 테스트 이미지에 대해서도 마찬가지로 임베딩 벡터를 구한다. 그런 다음 테스트 이미지의 임베딩 벡터와 이전에 구한 정상 클래스를 대표하는 가우시안 분포 정보와의 거리를 계산하여 이상치 맵을 생성하여 최종적으로 변위가 존재하는 영역을 감지한다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 임베딩 유사도 기반 모델이 목조 문화재에서 크랙이 발생하는 변위 영역을 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 크랙 현상에 대한 변위 영역 검출에 있어서 매우 적합함을 보여준다.

  • PDF

신경 회로망을 이용한 음성 신호의 벡터 양자화 (Speech Signal Vector Quantization Using Neural Network)

  • 백승복;김상희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1015-1018
    • /
    • 1999
  • This paper describes a vector quantization for speech signal coding using neural networks. We processed speech signal using LPC method that extracts speech signal feature, and speech signal feature is quantized using competitive neural network kohonen self-organization feature map.

  • PDF

Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구 (Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network)

  • 박준철;노태성;최동환;이창호
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.102-109
    • /
    • 2006
  • 본 논문에서 항공기용 터보 축 엔진의 결함 진단 알고리즘을 개발하기 위해 Support Vector Machine(SVM)과 인공신경망(ANN)을 이용하였다. 신경망을 이용한 시스템은 비선형성이 과도한 데이터를 학습할 때 지역 최소점(Local Minima)에 빠져 분류 정확률이 낮아질 수 있다. 이러한 위험성을 보안하기 위해 SVM에 의한 ANN의 분할 학습 알고리즘(SLA)을 제안하였다. 이것은 SVM을 이용하여 결함 위치를 판별 한 후 신경망이 선택적으로 학습을 하는 방법으로 학습 데이터의 비선형성을 줄여 분류 정확률을 높이기 때문에 신경망을 단독으로 사용할 때보다 개선된 성능을 보여주었다.

학습된 신경망 설계를 위한 가중치의 비트-레벨 어레이 구조 표현과 최적화 방법 (Bit-level Array Structure Representation of Weight and Optimization Method to Design Pre-Trained Neural Network)

  • 임국찬;곽우영;이현수
    • 대한전자공학회논문지SD
    • /
    • 제39권9호
    • /
    • pp.37-44
    • /
    • 2002
  • 학습된 신경망(Pre-trained neural network)은 고정된 가중치(weight)를 갖는다. 이 논문에서는 이러한 특성을 이용하여 신경망의 효과적인 디지털 하드웨어의 설계방법을 제안한다. 이를 위해 신경망의 PEs(Processing Elements)연산은 행렬-벡터 곱셈으로 표하고 고정된 가중치와 입력 데이터의 관계를 비트-레벨 어레이(array) 구조로 표현하여, 노드 소거와 가중치 비트 패턴에 따른 공유 노드 설정을 통한 최적화로 연산에 필요한 노드를 최소화한다. FPGA 시뮬레이션 결과, 완전한 정확성에 기반한 하드웨어를 설계하는 경우, 하드웨어 비용을 상당부분 줄였고 동작 주파수가 높다는 것을 확인하였다. 또한, 제안한 설계방법은 한정된 공간 내에서 많은 수의 PEs 구현이 가능함으로, 큰 신경망 모델에 대한 온-칩(on-chip) 구현이 가능하다.

공급망 리스크가 항만 컨테이너 물동량에 미치는 영향에 관한 연구: 부산항 사례를 중심으로 (Effect of Supply Chain Risk on Port Container Throughput: Focusing on the Case of Busan Port)

  • 김성기;김찬호
    • 한국항만경제학회지
    • /
    • 제39권2호
    • /
    • pp.25-39
    • /
    • 2023
  • 사회가 고도화되면서 복잡성은 증가하고 예측하기 어려운 리스크도 계속적으로 발생하고 있다. 특히 최근 코로나19 및 러시아-우크라이나 전쟁으로 인한 글로벌 공급망에 대한 리스크도 한 예라 할 수 있다. 공급망에 대한 리스크는 항만 물동량에 영향을 주어 항만운영과 항만산업 발전에 지장을 주게 된다. 본 연구는 글로벌 공급망 리스크가 항만 물동량, 특히 컨테이너 물동량에 주는 영향을 알아보기 위해 부산항 사례를 중심으로 글로벌 공급망 압력지수(GSCPI), 상하이 컨테이너 운임지수(SCFI), 산업생산지수, 소매 판매지수 등의 변수들이 물동량에 주는 영향에 대해 벡터자기회귀(VAR) 모형을 활용하여 실증분석을 시행하였다. 분석 결과, GSCPI의 상승은 단기적으로 부산항 물동량의 감소를 유발하지만, 일정 시점 후에는 물동량 증가요인으로 작용하는 파동의 형태로 영향을 주는 것으로 분석되었는데, 이는 비교군인 상하이항에서도 동일하게 나타났다. 다만 LA/LB항에서는 GSCPI가 물동량에 거의 영향을 주지 않는 것으로 나타났다. 또한 산업 생산지수와 소매판매지수는 부산항 물동량에 통계적으로 유의한 영향을 미치지 않는 것으로 나타났으며, SCFI의 경우 GSCPI가 물동량에 미치는 영향과 거의 유사한 것으로 분석되었다. 본 연구의 결과는 공급망 리스크가 점차 증가하고 있는 상황에서 리스크가 항만 물동량에 어떠한 형태로 영향을 미치는지를 밝혀 향후 공급망 리스크에 대비한 항만운영 정책 수립에 많은 시사점을 제공하고 있다.

인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법 (An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression)

  • 문지훈;전상훈;박진웅;최영환;황인준
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.293-302
    • /
    • 2016
  • 전기는 생산과 소비가 동시에 이루어지므로 필요한 전력 사용량을 예측하고, 이를 충족시킬 수 있는 충분한 공급능력을 확보해야만 안정적인 전력 공급이 가능하다. 특히, 대학 캠퍼스는 전력 사용이 많은 곳으로 시간과 환경에 따라 전력 변화폭이 다양하다. 이러한 이유로, 효율적인 전력 공급 및 관리를 위해서는 전력 사용량을 실시간으로 예측할 수 있는 모델이 요구된다. 국내외 대학 건물에 대해서는 전력 사용 패턴과 사례 분석을 통해 전력 사용에 영향을 주는 요인들을 파악하기 위한 다양한 연구가 진행되었으나, 전력 사용량의 정량적 예측을 위해서는 더 많은 연구가 필요한 상황이다. 본 논문에서는, 기계 학습 기법을 이용하여 대학 캠퍼스의 전력 사용량 예측 모델을 구성하고 평가한다. 이를 위해, 대학 캠퍼스의 주요 건물 클러스터에 대해 전력 사용량을 15분마다 1년 이상 수집한 데이터 셋을 사용한다. 수집된 전력 사용량 데이터는 수열 형태의 시계열 데이터로 기계 학습 모델에 적용 시 주기성 정보를 반영할 수 없으므로, 2차원 공간의 연속적인 데이터로 증강함으로써 주기성을 반영하였다. 이 데이터와 교육기관의 특성을 반영하기 위한 요일과 공휴일로 구성된 8차원 특성 벡터에 대해 주성분 분석(Principal Component Analysis) 알고리즘을 적용한다. 이어, 인공 신경망(Artificial Neural Network)과 지지 벡터 회귀분석(Support Vector Regression)을 이용하여 전력 사용량 예측 모델을 학습시키고, 5겹 교차검증(5-fold Cross Validation)을 통하여 적용된 기법의 성능을 평가하여, 실제 전력 사용량과 예측 결과를 비교한다.

안정된 구조정보와 신경망을 기반으로 한 인쇄체 한글 문자 인식 (Recognition of Printed Hangeul Characters Based on the Stable Structure Information and Neural Networks)

  • 장희돈;남궁재찬
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2276-2290
    • /
    • 1994
  • 본 논문에서는 입력된 문자에서 비교적 안정적 구조특징을 추출하고 이 구조정보를 이용하여 문자를 좀 더 세부적인 유형으로 분류한 후 인식을 행하는 문자 인식 방법을 제안한다. 본 방법은 우선 한글 문자를 스캐너로 입력받아 방향코드화하고 방향코드화된 문자로부터 방향밀도벡터를 추출하여 기본 6형식으로 분류한다. 그리고 기본형식 정보에 의해 각 문자로부터 안정된 구조특징을 추출하고 안정된 구조특징을 이용해 26가지 형태의 세부유형으로 분류하여 각 해당 자소 영역의 방향밀도벡터를 신경망에 입력하여 인식하거나 직접 해당 자소의 인식을 행한다. 한글 KS C 5601의 2350자에 대해 실험한 결과 94%의 인식률을 얻어 본 방법의 유효성을 확인할 수 있었다.

  • PDF