• Title/Summary/Keyword: 백스테핑

Search Result 62, Processing Time 0.019 seconds

Design and Implementation of Back-stepping Control for Path Tracking of Mobile Manipulator of Logistics and Manufacturing (물류이송 및 제조용 이동형 매니퓰레이터의 경로 추적을 위한 백스테핑 제어 설계와 구현)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.301-306
    • /
    • 2021
  • In this paper, we propose a modified back-stepping control method in view of the dynamic model of mobile manipulator has the nonholonomic constraints, these constraints should be considered to design a tracking controller for the mobile manipulator. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot systems. and the modified adaptive back0stepping method is applied to constructing the controller. The proposed controller can realize the tracking trajectory of the reference path. The efficiency and robustness of this control method is demonstrated by the simulation.

Analysis of Attitude Control Characteristics for an Underactuated Spacecraft Using a Single-Gimbal Variable-Speed CMG (1축 가변속 CMG를 장착한 부족구동 위성의 자세제어 특성 분석)

  • Jin, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • This paper deals with the attitude control of an underactuated spacecraft that has one single-gimbal variable-speed CMG. An underactuated spacecraft may not converge to arbitrary attitudes if its total angular momentum is not zero. To stabilize a spacecraft, the CMG has to align with the angular momentum in the inertial frame. Four different install configurations for the CMG have been considered and controllable angular momentums have been analyzed. Also, based on the backstepping method, stabilizing control laws have been presented and their properties have been compared.

Robust Backstepping Control Using Time Delay Estimation (시간 지연 추정을 이용한 강인 Backstepping 제어)

  • Kim, Seong-Tae;Chang, Pyung-Hun;Kang, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1833-1844
    • /
    • 2004
  • A controller is proposed for the robust backstepping control of a class of nonlinear multiple-input multiple-output (MIMO) systems which can be converted to a strict feedback form. The proposed robust backstepping control scheme follows a systematic procedure for the design of control laws and uses time delay estimation (TDE) to estimate the uncertainties such as parameter variations, unknown disturbances, and unmodeled dynamics, etc. The proposed controller can be also applied to nonlinear MIMO systems with unmatched uncertainties. Stability analysis of the closed-loop system which contains the plant and the proposed controller is also studied and hereby a sufficient stability condition for the closed-loop system is proposed. The simulation results show that the control scheme works well with uncertainties and the proposed stability condition is valid. The controller is experimentally verified on a single-link flexible arm to show the effectiveness of the proposed scheme in the complicated systems with uncertainties.

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

Novel Fuzzy Disturbance Observer based on Backstepping Method For Nonlinear Systems (비선형 시스템에서의 백스테핑 기법을 이용한 새로운 퍼지 외란 관측기 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.16-24
    • /
    • 2010
  • This paper is proposed a novel fuzzy disturbance observer based on backstepping method for nonlinear systems with unknown disturbance. Using fuzzy logic systems, a fuzzy disturbance observer with the disturbance observation input is introduced for unknown disturbance. To guarantee that the proposed disturbance observer estimates the unknown disturbance, the disturbance observation error dynamic system is employed. Under the framework of the backstepping design, the fuzzy disturbance observer is constructed recursively and an adaptive laws and the disturbance observation input are derived. Numerical examples are given to demonstrate the validity of our proposed disturbance observer for nonlinear systems.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Performance Improvement for Back-stepping Controller of a Mobile Robot Based on Fuzzy Systems (퍼지추론을 이용한 이동로봇의 백스테핑 제어기 성능개선)

  • 박재훼;진태석;이만형
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.308-316
    • /
    • 2003
  • This paper describes a tracking control for the mobile robot based on fuzzy systems. The conventional back-stepping controller includes the dynamics and kinematics of the mobile robot, which is affected by the derived velocity reference by a kinematic controller. To improve the performance of conventional back-stepping controller, this paper uses the fuzzy systems known as the nonlinear controller. In this paper, the new velocity reference for the back-stepping controller is derived through the fuzzy inference. Fuzzy rules are selected for gains of the kinematic controller. The produced velocity reference has properly considered the varying reference trajectories. And simulation results show that the proposed controller is more robust than the conventional back-stepping controller.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays (입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석)

  • Choi, Joon-Young
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1265-1272
    • /
    • 2019
  • We analyze the robustness of the existing predictor feedback controller for discrete-time linear systems with constant input delays against the structured model uncertainty. By modeling the constant input delay with a first-order PdE (Partial difference Equation), we replace the input delay with the PdE states. By applying a backstepping transformation, we build a target system that enables to construct an explicit Lyapunov function. Constructing the explicit Lyapunov function that covers the entire state variables, we prove the existence of an allowable maximum size of the structured model uncertainty to maintain stability and establish the robustness of the predictor feedback controller. The numerical example demonstrates that the stability of closed-loop system is maintained in the presence of the structured model uncertainty, and verifies the robustness of the predictor feedback controller.

Design of Control System for Organic Flight Array based on Back-stepping Controller (Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계)

  • Oh, Bokyoung;Jeong, Junho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.711-723
    • /
    • 2017
  • This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.