• Title/Summary/Keyword: 미세 액적

Search Result 115, Processing Time 0.042 seconds

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2658-2663
    • /
    • 2008
  • In the present study, we designed a microfluidic flatform that generates monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported toward the flow-focusing geometry, where each droplet is broken up into the targeted size by the action of viscous stresses. Because the droplet prior to rupture blocks the straight channel that leads to the flow-focusing geometry, it moves very slowly by the pressure difference applied between the advancing and receding regions of the moving droplet. This configuration enables very low flow rate of inner fluid and higher flow rate ratio between inner and outer fluids at the flow-focusing region. It is shown that the present microfluidic device can generate droplets with diameters about 1 micrometer size and standard deviation less than 3%.

  • PDF

Micro Patterning of Conductive Line by Micro Droplet Ejection of Nano Metal Ink (나노 금속잉크의 미세 액적 토출을 이용한 마이크로 패터닝)

  • Seo S.H.;Park S.J.;Jung H.C.;Joung J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.689-693
    • /
    • 2005
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. For the application of inkjet printing to electronic field, one of the key factors is exact realization of designed images into printed patterns. In this work, micro patterning for conducting line has been studied using the piezoelectric print head and silver nano ink. Dimensions of printed images have been predicted in terms of print resolution and diameter of a single dot. The predicted and the measured values showed consistent results. Using the results, the design capability for industrial inkjet printing could be achieved.

  • PDF

Self-healing capsule manufacturing and characteristic analysis using microfluidic control method droplet manufacturing technology (미세 유체제어 방식 드랍렛 제작 기술을 이용한 자가치유 캡슐 제작 및 특성 분석)

  • Ji, Dong-min;Song, Won-Il;lee, ja sung;Ramos-Sebastian, Armando;Kim, S-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.251-252
    • /
    • 2022
  • The microfluidic controlled droplet manufacturing system is one of the most powerful methods for capsule manufacturing. The microfluidic control method can control the type and size of the capsule by changing the size and configuration of the channel. In addition, by increasing the number of channels, capsules of uniform size can be mass-produced. In this paper, a capsule manufacturing system including flow-focusing and T junction method was designed. In addition, the effectiveness of this system was verified by manufacturing multi-emulsion capsules with a size of 2.2 to 3 mm.

  • PDF

Size-based separation of microscale droplets by surface acoustic wave-induced acoustic radiation force (표면파 유도 음향방사력을 이용한 미세액적의 크기 선별)

  • Mushtaq, Ali;Beomseok, Cha;Muhammad, Soban Khan;Hyunwoo, Jeon;Song Ha, Lee;Woohyuk, Kim;Jeongu, Ko;Jinsoo, Park
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.19-26
    • /
    • 2022
  • In droplet microfluidics, precise droplet manipulation is required in numerous applications. This study presents ultrasonic surface acoustic wave (USAW)-based microfluidic device for label-free droplet separation based on size. The proposed device is composed of a slanted-finger interdigital transducer on a piezoelectric substrate and a polydimethylsiloxane microchannel placed on the substrate. The microchannel is aligned in the cross-type configuration where the USAWs propagate in a perpendicular direction to the flow in the microchannel. When droplets are exposed to an acoustic field, they experience the USAW-induced acoustic radiation force (ARF), whose magnitude varies depending on the droplet size. We modeled the USAW-induced ARF based on ray acoustics and conducted a series of experiments to separate different-sized droplets. We found that the experimental results were in good agreement with the theoretical estimation. We believe that the proposed method will serve as a promising tool for size-based droplet separation in a label-free manner.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions (미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화)

  • Song, YoungShin;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.632-637
    • /
    • 2014
  • A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to $60{\mu}m$, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

Preparation of Monodisperse PEGDA Microparticles Using a Dispensing Needle Based Microfluidic Device (주사기 바늘 기반의 미세유체 장치를 이용한 단분산성 PEGDA 입자의 제조)

  • Jin, Si Hyung;Kim, Taewan;Oh, Dongseok;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.58-64
    • /
    • 2019
  • This study presents a novel method for preparing monodisperse polyethylene glycol diacrylate (PEGDA) microparticles in a dispensing needle based microfluidic device. The microfluidic devices are manufactured by manually assembling various off-the-shelf products without using additional equipment. In this microfluidic device, the volumetric flow rates of the dispersed phase of PEGDA solution and the continuous phase of oil are controlled to generate monodisperse PEGDA droplets. The PEGDA droplet contains photo-initiator thus it is crosslinked to microparticle by photopolymerization at the ends of the device. The particle size is easily controlled by adjusting the volume flow rate and the size of the microfluidic device. The monodispersity of the particles is calculated by a coefficient of variation of 2.57%. To demonstrate the biological applications of PEGDA particles, cells are encapsulated and observed for proliferation and viability.

MICROSTURCTURE AND MAGNETIC PROPERTY OF NiZn-FERRITE POWDER SYNTHESIZED BY ULTRASONIC SPRAY PYROLYSIS PROCESS (초음파 분무 열분해법으로 합성한 NiZn 페라이트 분말의 미세구조 및 자기 특성)

  • 남중희;김민상;박상진;김효태;정상진
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.114-115
    • /
    • 2002
  • 다성분계 세라믹스에 대하여 초미립 및 나노 분말을 제조하기 위해 공침법, 비정질 citrate법, 무기 금속염을 이용한 sol-gel법, 분무 열분해법 등과 같이 비교적 단순한 공정이면서 입도 분포가 좁고 재현성이 우수한 구형의 초미립 또는 나노 분말의 제조에 적합한 방법들이 많이 연구되고있다[1-3]. 분무 열분해법은 출발물질로 용액을 사용하고 미세한 액적(droplet)을 초음파 분무 후 열분해 하여 분말을 합성하는 방법으로, 입자의 조성이 균질하고 구형의 형상을 갖는 우수한 결정상을 얻을 수 있다. (중략)

  • PDF

In-droplet preconcentration of microparticles using surface acoustic waves (표면탄성파를 이용한 액적 내 마이크로입자의 농축)

  • Park, Kwangseok;Park, Jinsoo;Jung, Jin Ho;Destgeer, Ghulam;Ahmed, Husnain;Ahmad, Raheel;Sung, Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • In droplet-based microfluidic systems, in-droplet preconcentration of a sample is one of the important prerequisites for biochemical or medical analysis. There have been a few studies on preconcentration in a moving droplet, but they are limited to practical applications since 1) their method are time-consuming or 2) they require specific properties such as electric and magnetic properties. In this study, we demonstrated the position control of polystyrene particles of 5 and $10{\mu}m$ in diameter inside a moving water-in-oil droplet using traveling surface acoustic waves. Since the frequencies for effective control of each diameter were found, microparticles with no labels could be utilized. In addition, the proposed method enabled on-demand preconcentration inside a polydimethylsiloxane microchannel. In-droplet preconcentration of microparticles was realized by splitting a mother droplet with manipulated particles at a downstream bifurcation zone. Given these advantages, the proposed system is a promising acoustofluidic lab-on-a-chip platform for preconcentration inside a droplet.