DOI QR코드

DOI QR Code

Numerical Study of Impact of Microdroplet Containing Nanoparticles

나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구

  • Roh, Sang-Eun (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Son, Gi-Hun (Dept. of Mechanical Engineering, Sogang Univ.)
  • Received : 2011.12.22
  • Accepted : 2012.03.12
  • Published : 2012.06.01

Abstract

The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

충돌, 퍼짐 및 수축을 포함한 나노입자 혼합 액적의 거동에 대한 수치모사를 수행하였다. 기체-액체 상경계면은 벽면에서의 접촉각 이력현상을 포함한 레벨셋 방법을 이용하여 해석하였다. 액적 내부의 나노입자 분포를 해석하기 위하여 물질의 열확산을 반영한 농도 방정식을 해석에 포함하였다. 수치해석 결과로부터 나노 입자의 분포는 온도의 불균일 분포에 크게 영향을 받는 것을 확인하였다. 나노입자의 농도 집중도에 의한 표면 장력 및 접촉각변화 효과에 대한 연구를 수행하였다.

Keywords

References

  1. Buffat, P. A. and Borel, J. P., 1976, "Size Effect on the Melting Temperature of Gold Particles," Phys. Rev. A., Vol. 13 No. 6, pp. 2297-2298.
  2. Han, S., Lim, T., Chung, J., Kim, D. and Moon, J., 2006, "Sintering and Nanosecond Laser Ablation of Silver Nanoparticle Film," Proceedings of the KSME Spring Annual Meeting, 2120-2126.
  3. Ko, S, H., 2011, "Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication," Trans. of the KSME B,Vol. 35, No. 5, pp. 533-538. https://doi.org/10.3795/KSME-B.2011.35.5.533
  4. Harlow, F. H. and Shannon, J. P., 1967, "The Splash of a Liquid Droplet," J. Appl. Phys., Vol. 38 pp. 3855-3866. https://doi.org/10.1063/1.1709031
  5. Trapaga, G. and Szekely, J., 1991, "Mathematical Modeling of the Isothermal Impinging of Liquid Droplets in Spray Processes," Metall. Trans. B, Vol. 22, pp. 901-914. https://doi.org/10.1007/BF02651166
  6. Hirt, C. W. and Nichols, B. D., 1981, "Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys., Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  7. Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C. M. and Zhao, Z., 1995, "Wetting Effects on the Spreding of a Liquid Droplet Colliding with a Flat Surface," Phys. Fluids., Vol. 7, pp. 236-247. https://doi.org/10.1063/1.868622
  8. Fukai, J., Shiiba, Y. and Miyatake, O., 1997, "Theoretical Study of Droplet Impingement on a Solid Surface Below the Leidenfrost Temperature," Int. J. Heat Mass Transfer., Vol. 40, pp. 2490-2492. https://doi.org/10.1016/S0017-9310(96)00264-5
  9. Sussman, M., Smereka, P. and Osher, S., 1994, "A Level Set Approch for Computing Solution to Incompressible Two-Phase Flow," J. Comput. Phys., Vol. 114, pp. 146-159. https://doi.org/10.1006/jcph.1994.1155
  10. Nicolas, M. 2005, "Spreading of a Drop of Neutrally Buoyant Suspension," J. Fluid. Mech., Vol. 545, pp. 271-280. https://doi.org/10.1017/S0022112005006944
  11. Dietzel, M., Bieri, N. R. and Poulikakos, D. 2008, "Dropwise Deposition and Wetting of Nanoparticle Suspensions," I. J. Heat and Fluid Flow,. Vol. 29, pp. 250-262. https://doi.org/10.1016/j.ijheatfluidflow.2007.08.001
  12. Jeong, H. J., Hwang, W. R., and Kim, C. Y., 2010, "Numerical Simulations of Capillary Spreading of Particle-Laden Droplet on a Solid Surface," J. Materials Processing Technology, Vol. 210, pp. 297-305. https://doi.org/10.1016/j.jmatprotec.2009.09.014
  13. Buogiormo, J. 2006, "Convective Transport in Nanofluids," ASME, Vol. 128, pp. 240-250. https://doi.org/10.1115/1.2150834
  14. Gharagozloo, P. E. and Goodson. K. E., 2011, "Temperature-Dependent Aggregation and Diffusion in Nanofluids," Int. J. Heat Mass Transfer, Vol. 54, pp.797-806. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.058
  15. Fischer, M., Juric, D. and Poulikakos, D. 2010, "Large Convective Heat Transfer Enhancement in Microchannels with a Train f Coflowing Immiscible or Colloidal Droplets," Int. J. Heat Transfer, Vol. 132, pp.112402-1-112402-10. https://doi.org/10.1115/1.4002031
  16. Lee, W. and Son, G., 2001, "Numerical Study of Droplet Impact and Coalescence in a Microline Patterning Process," Comput. Fluids Vol. 42, pp. 26-33.
  17. Einstein, A. 1906, "Eine Neue Bestimmung der Molekuldimenstioen," Annalen der Physik, Leipzig, Vol. 19, pp. 289-306.
  18. Lim, T., Han, S., Chung, J., Chung, J, T. and Ko, S., 2009, "Expermental Study on Spreading and Evaporation of Inkhet Printed Pico-liter Droplet on a Heated Substrate," Int. J. Heat Mass Transfer, Vol. 52, pp. 431-441. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.028
  19. Carey, V. P,. 2001, Liquid-Vapor Phase-Change Phenomena, Taylor&Flancys Group, Newyork, pp. 73-106.