Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.5.632

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions  

Song, YoungShin (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.52, no.5, 2014 , pp. 632-637 More about this Journal
Abstract
A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to $60{\mu}m$, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.
Keywords
Hydrogel; Alginate; Monodispersity; Microfluidic; Mass Transfer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).
2 Nie, Z. H., Xu, S. Q., Seo, M., Lewis, P. C. and Kumacheva, E., "Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors," J. Am. Chem. Soc., 127(22), 8058-8063(2005).   DOI   ScienceOn
3 Zourob, M., Mohr, S., Mayes, A. G., Macaskill, A., Perez-Moral, N., Fielden, P. R. and Goddard, N. J., "A Micro-reactor for Preparing Uniform Molecularly Imprinted Polymer Beads," Lab on a Chip., 6(2), 296-301(2006).   DOI   ScienceOn
4 Tan, W. H. and Takeuchi, S., "Monodisperse Alginate Hydrogel Microbeads for Cell Encapsulation," Adv. Mater., 19(18), 2696(2007).   DOI   ScienceOn
5 Huang, K. S., Lai, T. H. and Lin, Y. C., "Manipulating the Generation of Ca-alginate Microspheres Using Microfluidic Channels As a Carrier of Gold Nanoparticles," Lab on a Chip., 6(7), 954-957(2006).   DOI
6 Nie, Z. H., Seo, M. S., Xu, S. Q., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P. and Stone, H. A., "Emulsification in a Microfluidic Flow-focusing Device: Effect of the Viscosities of the Liquids," Microfluidics and Nanofluidics, 5(5), 585-594(2008).   DOI   ScienceOn
7 Yobas, L., Martens, S., Ong, W. L. and Ranganathan, N., "Highperformance Flow-focusing Geometry for Spontaneous Generation of Monodispersed Droplets," Lab Chip, 6(8), 1073-9(2006).   DOI   ScienceOn
8 Zhou, C., Yue, P. and Feng, J. J., "Formation of Simple and Compound Drops in Microfluidic Devices," Physics of Fluids, 18(092105), 1-14(2006).
9 Peng, L., Yang, M., Guo, S. S., Liu, W. and Zhao, X. Z., "The Effect of Interfacial Tension on Droplet Formation in Flow-focusing Microfluidic Device," Biomed Microdevices, 13(3), 559-64(2011).   DOI
10 Agarwal, P., Zhao, S. T., Bielecki, P., Rao, W., Choi, J. K., Zhao, Y., Yu, J. H., Zhang, W. J. and He, X. M., "One-step Microfluidic Generation of Pre-hatching Embryo-like Core-shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells," Lab on a Chip, 13(23), 4525-4533(2013).   DOI
11 Zhang, H., Tumarkin, E., Peerani, R., Nie, Z., Sullan, R. M. A., Walker, G. C. and Kumacheva, E., "Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology," J. Am. Chem. Soc., 128(37), 12205-12210(2006).   DOI
12 Dreyfus, R., Tabeling, P. and Willaime, H., "Ordered and Disordered Patterns in Two-phase Flows in Microchannels," Phys. Rev. Lett., 90(14), (2003).
13 Xu, J. H., Luo, G. S., Li, S. W. and Chen, G. G., "Shear Force Induced Monodisperse Droplet Formation in a Microfluidic Device by Controlling Wetting Properties," Lab on a Chip, 6(1), 131-136(2006).   DOI   ScienceOn
14 Choi, C. H., Jung, J. H. and Lee, C. S., "in situ Microfluidic Method for the Generation of Uniform PEG Microfiber," Korean Chem. Eng. Res., 48(4), 470-474(2010).
15 Choi, C. H., Jung, J. H., Rhee, Y. W., Kim, D. P., Shim, S. E. and Lee, C. S., "Generation of Monodisperse Alginate Microbeads and in situ Encapsulation of Cell in Microfluidic Device," Biomed Microdevices, 9(6), 855-862(2007).   DOI   ScienceOn
16 Silva, C. M., Ribeiro, A. J., Figueiredo, I. V., Goncalves, A. R. and Veiga, F., "Alginate Microspheres Prepared by Internal Gelation: Development and Effect on Insulin Stability," Int J Pharm, 311(1-2), 1-10(2006).   DOI   ScienceOn
17 Sugiura, S., Oda, T., Aoyagi, Y., Matsuo, R., Enomoto, T., Matsumoto, K., Nakamura, T., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Microfabricated Airflow Nozzle for Microencapsulation of Living Cells into 150 Micrometer Microcapsules," Biomed Microdevices, 9(1), 91-99(2007).   DOI
18 Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006).   DOI   ScienceOn
19 Sugiura, S., Oda, T., Izumida, Y., Aoyagi, Y., Satake, M., Ochiai, A., Ohkohchi, N. and Nakajima, M., "Size Control of Calcium Alginate Beads Containing Living Cells Using Micro-nozzle Array," Biomaterials, 26(16), 3327-3331(2005).   DOI
20 Halle, J. P., Leblond, F. A., Pariseau, J. F., Jutras, P., Brabant, M. J. and Lepage, Y., "Studies on Small (< 300 microns) Microcapsules: II-Parameters Governing the Production of Alginate Beads by High Voltage Electrostatic Pulses," Cell Transplant, 3(5), 365-372(1994).   DOI
21 Min, S. K., Lee, B. M., Hwang, J. H., Ha, S. H. and Shin, H. S., "Mathematical Analysis of Colonial Formation of Embryonic Stem Cells in Microfluidic System," Korean J. Chem. Eng., 29(3), 392-395(2012).   과학기술학회마을   DOI   ScienceOn
22 Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-284(2013).   DOI   ScienceOn
23 Desai, A., Kisaalita, W. S., Keith, C. and Wu, Z. Z., "Human Neuroblastoma (SH-SY5Y) Cell Culture and Differentiation in 3-D Collagen Hydrogels for Cell-based Biosensing," Biosens Bioelectron, 21(8), 1483-1492(2006).   DOI
24 Norton, L. W., Tegnell, E., Toporek, S. S. and Reichert, W. M., "In vitro Characterization of Vascular Endothelial Growth Factor and Dexamethasone Releasing Hydrogels for Implantable Probe Coatings," Biomaterials, 26(16), 3285-3297(2005).   DOI
25 Goponenko, A. V. and Asher, S. A., "Modeling of Stimulated Hydrogel Volume Changes in Photonic Crystal $Pb^{2+}$ Sensing Materials," J Am Chem Soc., 127(30), 10753-10759(2005).   DOI   ScienceOn
26 Frykman, S. and Srienc, F., "Quantitating Secretion Rates of Individual Cells: Design of Secretion Assays," Biotechnol Bioeng., 59(2), 214-226(1998).   DOI
27 Dove, A., "Cell-based Therapies Go Live," Nat Biotechnol., 20(4), 339-343(2002).   DOI
28 Borisov, S. M. and Wolfbeis, O. S., "Temperature-sensitive Europium(III) Probes and Their Use for Simultaneous Luminescent Sensing of Temperature and Oxygen," Anal Chem., 78(14), 5094-5101(2006).   DOI   ScienceOn
29 Ben-Moshe, M., Alexeev, V. L. and Asher, S. A., "Fast Responsive Crystalline Colloidal Array Photonic Crystal Glucose Sensors," Anal Chem., 78(14), 5149-5157(2006).   DOI   ScienceOn
30 Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R. and Lee, A. P., "Controlled Microfluidic Encapsulation of Cells, Proteins, and Microbeads in Lipid Vesicles," J Am Chem Soc., 128(17), 5656-5658(2006).   DOI   ScienceOn
31 Xu, B., Iwata, H., Miyamoto, M., Balamurugan, A. N., Murakami, Y., Cui, W., Imamura, M. and Inoue, K., "Functional Comparison of the Single-layer Agarose Microbeads and the Developed Three-layer Agarose Microbeads as the Bioartificial Pancreas: an in vitro Study," Cell Transplant, 10(4-5), 403-408(2001).
32 Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011).   DOI   ScienceOn