DOI QR코드

DOI QR Code

In-droplet preconcentration of microparticles using surface acoustic waves

표면탄성파를 이용한 액적 내 마이크로입자의 농축

  • Received : 2017.04.11
  • Accepted : 2017.04.19
  • Published : 2017.04.30

Abstract

In droplet-based microfluidic systems, in-droplet preconcentration of a sample is one of the important prerequisites for biochemical or medical analysis. There have been a few studies on preconcentration in a moving droplet, but they are limited to practical applications since 1) their method are time-consuming or 2) they require specific properties such as electric and magnetic properties. In this study, we demonstrated the position control of polystyrene particles of 5 and $10{\mu}m$ in diameter inside a moving water-in-oil droplet using traveling surface acoustic waves. Since the frequencies for effective control of each diameter were found, microparticles with no labels could be utilized. In addition, the proposed method enabled on-demand preconcentration inside a polydimethylsiloxane microchannel. In-droplet preconcentration of microparticles was realized by splitting a mother droplet with manipulated particles at a downstream bifurcation zone. Given these advantages, the proposed system is a promising acoustofluidic lab-on-a-chip platform for preconcentration inside a droplet.

Keywords

References

  1. Leng, X. et al., 2010, "Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR", Lab Chip, Vol. 10(21), pp.2841-2843 https://doi.org/10.1039/c0lc00145g
  2. Oh, J. K. et al., 2008, "The development of microgels/nanogels for drug delivery applications", Prog. Polym. Sci., Vol. 33(4), pp.448-477 https://doi.org/10.1016/j.progpolymsci.2008.01.002
  3. Millman, J. et al., 2005, "Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors", Nat. Mater., Vol. 4, pp.98-102
  4. Zheng, B. et al., 2003, "Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets", J. Am. Chem. Soc., Vol. 125(37), pp.11170-11171 https://doi.org/10.1021/ja037166v
  5. Utech, S. et al., 2015, "Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture", Adv. Healthcare Mater., Vol. 4(11), pp.1628-1633 https://doi.org/10.1002/adhm.201500021
  6. Hein, M. et al., 2015, "Flow field induced particle accumulation inside droplets in rectangular channels", Lab Chip, Vol. 15(13), pp.2879-2886. https://doi.org/10.1039/C5LC00420A
  7. Link, D R. et al., 2006, "Electric control of droplets in microfluidic devices", Angew. Chem. Int. Ed., Vol. 45(16) pp.2556-2560. https://doi.org/10.1002/anie.200503540
  8. Chen, C. -H. et al., 2009, "Microfluidic Assembly of Magnetic Hydrogel Particles with Uniformly Anisotropic Structure", Adv. Mater. Vol. 21(31) pp.3201-3204 https://doi.org/10.1002/adma.200900499
  9. Enger, J. et al., 2004, "Optical tweezers applied to a microfluidic system", Lab Chip, Vol. 4(3) pp.196-200 https://doi.org/10.1039/B307960K
  10. Petersson, F. et al., 2007, "Free Flow Acoustophoresis: Microfluidic-Based Mode of Particles and Cell Separation", Anal. Chem., Vol. 79(14), pp.5117-5123 https://doi.org/10.1021/ac070444e
  11. Cho, S. K. et al., 2007, "Concentration and binary separation of micro particles for droplet-based digital microfluidics", Lab Chip, Vol. 7(4), pp.490-498 https://doi.org/10.1039/b615665g
  12. Brouzes, E. et al., 2015, "Rapid and continuous magnetic separation in droplet microfluidic devices", Lab Chip, Vol. 15(3), pp.908-919. https://doi.org/10.1039/C4LC01327A
  13. Fornell, A. et al., 2015, "Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis", Anal. Chem., Vol. 87(20), pp.10521-10526. https://doi.org/10.1021/acs.analchem.5b02746
  14. Hasegawa, T. & Yosioka, K., 1969, "Acoustic- Radiation Force on a Solid Elastic Sphere", J. Acoust. Soc. Am., Vol. 46(5B), pp.1139-1143 https://doi.org/10.1121/1.1911832
  15. Destgeer. G. et al., 2015, "Microchannel Anechoic Corner for Size-Selective Separation and Medium Exchange via Traveling Surface Acoustic Waves", Anal. Chem., Vol. 87(9) pp.4627-4632. https://doi.org/10.1021/acs.analchem.5b00525
  16. Jung, J. H. et al., 2016, "On-demand droplet splitting using surface acoustic waves", Lab Chip, Vol. 16(17), pp.3235-3243 https://doi.org/10.1039/C6LC00648E