Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.1.58

Preparation of Monodisperse PEGDA Microparticles Using a Dispensing Needle Based Microfluidic Device  

Jin, Si Hyung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Taewan (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Oh, Dongseok (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kang, Kyoung-Ku (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.57, no.1, 2019 , pp. 58-64 More about this Journal
Abstract
This study presents a novel method for preparing monodisperse polyethylene glycol diacrylate (PEGDA) microparticles in a dispensing needle based microfluidic device. The microfluidic devices are manufactured by manually assembling various off-the-shelf products without using additional equipment. In this microfluidic device, the volumetric flow rates of the dispersed phase of PEGDA solution and the continuous phase of oil are controlled to generate monodisperse PEGDA droplets. The PEGDA droplet contains photo-initiator thus it is crosslinked to microparticle by photopolymerization at the ends of the device. The particle size is easily controlled by adjusting the volume flow rate and the size of the microfluidic device. The monodispersity of the particles is calculated by a coefficient of variation of 2.57%. To demonstrate the biological applications of PEGDA particles, cells are encapsulated and observed for proliferation and viability.
Keywords
PEGDA; Microparticle; Microfluidics; Dispensing needle; Monodisperse;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A. and Lee, C. S., "Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem. Int. Ed., 49(42), 7748-7752(2010).   DOI
2 Choi, C. H., Jung, J. H., Hwang, T. S. and Lee, C. S., "In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres," Macromol. Res., 17(3), 163-167(2009).   DOI
3 Krutkramelis, K., Xia, B. and Oakey, J., "Monodisperse Polyethylene Glycol Diacrylate Hydrogel Microsphere Formation by Oxygen-Controlled Photopolymerization in a Microfluidic Device," Lab Chip, 16(8), 1457-1465(2016).   DOI
4 Li, C. Y., Wood, D. K., Hsu, C. M. and Bhatia, S. N., "DNA-Templated Assembly of Droplet-Derived PEG Microtissues," Lab Chip, 11(17), 2967-2975(2011).   DOI
5 Lee, A. G., Arena, C. P., Beebe, D. J. and Palecek, S. P., "Development of Macroporous Poly(ethylene glycol) Hydrogel Arrays within Microfluidic Channels," Biomacromolecules, 11(12), 3316-3324(2010).   DOI
6 Chen, H. S., Li, J., Zhou, W. Z., Pelan, E. G., Stoyanov, S. D., Arnaudov, L. N. and Stone, H. A., "Sonication-Microfluidics for Fabrication of Nanoparticle-Stabilized Microbubbles," Langmuir, 30(15), 4262-4266(2014).   DOI
7 Koh, C. G., Kang, X. H., Xie, Y. B., Fei, Z. Z., Guan, J. J., Yu, B., Zhang, X. L. and Lee, L. J., "Delivery of Polyethylenimine/DNA Complexes Assembled in a Microfluidics Device," Mol. Pharmaceutics, 6(5), 1333-1342(2009).   DOI
8 Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J. and Ismagilov, R. F., "Experimental Test of Scaling of Mixing by Chaotic Advection in Droplets Moving Through Microfluidic Channels," Appl. Phys. Lett., 83(22), 4664-4666(2003).   DOI
9 Kim, C., Park, K. S., Kang, S. M., Kim, J., Song, Y. and Lee, C. S., "Comparison of Pectin Hydrogel Collection Methods in Microfluidic Device," Korean Chem. Eng. Res., 53(6), 740-745(2015).   DOI
10 Ward, T., Faivre, M., Abkarian, M. and Stone, H. A., "Microfluidic Flow Focusing: Drop Size and Scaling in Pressure Versus Flow-Rate-Driven Pumping," Electrophoresis, 26(19), 3716-3724(2005).   DOI
11 Choi, C. H., Prasad, N., Lee, N. R. and Lee, C. S., "Investigation of Microchannel Wettability on the Formation of Droplets and Efficient Mixing in Microfluidic Devices," Biochip J., 2(1), 27-32(2008).
12 Jin, S. H., Jeong, H. H., Lee, B., Lee, S. S. and Lee, C. S., "A Programmable Microfluidic Static Droplet Array for Droplet Generation, Transportation, Fusion, Storage, and Retrieval," Lab Chip, 15(18), 3677-3686(2015).   DOI
13 Jin, S. H., Lee, S. S., Lee, B., Jeong, S. G., Peter, M. and Lee, C. S., "Programmable Static Droplet Array for the Analysis of Cell-Cell Communication in a Confined Microenvironment," Anal. Chem., 89(18), 9722-9729(2017).   DOI
14 Nam, J. O., Kim, J., Jin, S. H., Chung, Y. M. and Lee, C. S., "Microfluidic Preparation of a Highly Active and Stable Catalyst by High Performance of Encapsulation of Polyvinylpyrrolidone (PVP)-Pt Nanoparticles in Microcapsules," J. Colloid Interface Sci., 464, 246-253(2016).   DOI
15 Zhu, P. G., Kong, T. T., Kang, Z. X., Tian, X. W. and Wang, L. Q., "Tip-Multi-Breaking in Capillary Microfluidic Devices," Sci. Rep., 6, 11102-1-11102-8(2015).
16 Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science, 308(5721), 537-541(2005).   DOI
17 Jin, S. H., Jang, S. C., Lee, B., Jeong, H. H., Jeong, S. G., Lee, S. S., Kim, K. P. and Lee, C. S., "Monitoring of Chromosome Dynamics of Single Yeast Cells in a Microfluidic Platform with Aperture Cell Traps," Lab Chip, 16(8), 1358-1365(2016).   DOI
18 Choi, C. H., Weitz, D. A. and Lee, C. S., "One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position," Adv. Mater., 25(18), 2536-2541(2013).   DOI
19 Choi, C. H., Jeong, J. M., Kang, S. M., Lee, C. S. and Lee, J., "Synthesis of Monodispersed Microspheres from Laplace Pressure Induced Droplets in Micromolds," Adv. Mater., 24(37), 5078-5082(2012).   DOI
20 Choi, C. H., Yi, H., Hwang, S., Weitz, D. A. and Lee, C. S., "Microfluidic Fabrication of Complex-Shaped Microfibers by Liquid Template-Aided Multiphase Microflow," Lab Chip, 11(8), 1477-1483(2011).   DOI
21 Nabavi, S. A., Vladisavljevic, G. T., Gu, S. and Ekanem, E. E., "Double Emulsion Production in Glass Capillary Microfluidic Device: Parametric Investigation of Droplet Generation Behaviour," Chem. Eng. Sci., 130, 183-196(2015).   DOI
22 Deng, N. N., Meng, Z. J., Xie, R., Ju, X. J., Mou, C. L., Wang, W. and Chu, L. Y., "Simple and Cheap Microfluidic Devices for the Preparation of Monodisperse Emulsions," Lab Chip, 11(23), 3963-3969(2011).   DOI
23 Lee, T. Y., Ku, M., Kim, B., Lee, S., Yang, J. and Kim, S. H., "Microfluidic Production of Biodegradable Microcapsules for Sustained Release of Hydrophilic Actives," Small, 24(29), 1700646-1-1700646-11 (2017).
24 Jin, S. H., Jung, J. H., Jeong, S. G., Kim, J., Park, T. J. and Lee, C. S., "Microfluidic Dual Loops Reactor for Conducting a Multistep Reaction," Front. Chem. Sci. Eng., 12(2), 239-246(2018).   DOI
25 Kang, J. H., Lee, S. S., Guerrero, J., Fernandez-Nieves, A., Kim, S. H. and Reichmanis, E., "Ultrathin Double-Shell Capsules for High Performance Photon Upconversion," Adv. Mater., 29(21), 1606830-1-1606830-6(2017).   DOI
26 Ho, C. M. B., Ng, S. H., Li, K. H. H. and Yoon, Y. J., "3D Printed Microfluidics for Biological Applications," Lab Chip, 15(18), 3627-3637(2015).   DOI
27 Bardin, D. and Lee, A. P., "Low-Cost Experimentation for the Study of Droplet Microfluidics," Lab Chip, 14(20), 3978-3986 (2014).   DOI
28 Hwangbo, K. H., Kim, M. R., Lee, C. S. and Cho, K. Y., "Facile Fabrication of Uniform Golf-Ball-Shaped Microparticles from Various Polymers," Soft Matter, 7(22), 10874-10878(2011).   DOI
29 Li, T. B., Zhao, L., Liu, W. M., Xu, J. and Wang, J. Y., "Simple and Reusable Off-the-Shelf Microfluidic Devices for the Versatile Generation of Droplets," Lab Chip, 16(24), 4718-4724(2016).   DOI
30 Benson, B. R., Stone, H. A. and Prud'homme, R. K., "An "Off-the-Shelf" Capillary Microfluidic Device that Enables Tuning of the Droplet Breakup Regime at Constant Flow Rates," Lab Chip, 13(23), 4507-4511(2013).   DOI
31 Xu, S., Nie, Z., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Garstecki, P., Weibel, D. B., Gitlin, I. and Whitesides, G. M., "Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition," Angew. Chem. Int. Ed., 44(5), 724-728(2005).   DOI