• Title/Summary/Keyword: 모듈러 곱셈

Search Result 80, Processing Time 0.02 seconds

Design of MSB-First Digit-Serial Multiplier for Finite Fields GF(2″) (유한 필드 $GF(2^m)$상에서의 MSB 우선 디지트 시리얼 곱셈기 설계)

  • 김창훈;한상덕;홍춘표
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.625-631
    • /
    • 2002
  • This paper presents a MSB-first digit-serial systolic array for computing modular multiplication of A(x)B(x) mod G(x) in finite fields $GF(2^m)$. From the MSB-first multiplication algorithm in $GF(2^m)$, we obtain a new data dependence graph and design an efficient digit-serial systolic multiplier. For circuit synthesis, we obtain VHDL code for multiplier, If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has much more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of unidirectional data flow and regularity, it shows good extension characteristics with respect to m and L.

Design of the Multiplier in case of P=2 over the Finite Fields based on the Polynomial (다항식에 기초한 유한체상의 P=2인 경우의 곱셈기 설계)

  • Park, Chun-Myoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.70-75
    • /
    • 2016
  • This paper proposes the constructing method of effective multiplier based on the finite fields in case of P=2. The proposed multiplier is constructed by polynomial arithmetic part, mod F(${\alpha}$) part and modular arithmetic part. Also, each arithmetic parts can extend according to m because of it have modular structure, and it is adopted VLSI because of use AND gate and XOR gate only. The proposed multiplier is more compact, regularity, normalization and extensibility compare with earlier multiplier. Also, it is able to apply several fields in recent hot issue IoT configuration.

(Design of New Architecture for Simultaneously Computing Multiplication and Squaring over $GF(2^m)$ based on Cellular Automata) ($GF(2^m)$상에서 셀룰러 오토마타를 이용한 곱셈/제곱 동시 연산기 설계)

  • Gu, Gyo-Min;Ha, Gyeong-Ju;Kim, Hyeon-Seong;Yu, Gi-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.211-219
    • /
    • 2002
  • In this paper, a new architecture that can simultaneously process modular multiplication and squaring on GF(2$^{m}$ ) in m clock cycles by using the cellular automata is presented. This can be used efficiently for the design of the modular exponentiation on the finite field which is the basic computation in most public key crypto systems such as Diffie-Hellman key exchange, EIGamal, etc. Also, the cellular automata architecture is simple, regular, modular, cascadable and therefore, can be utilized efficiently for the implementation of VLSI.

Modular Exponentiation by m-Numeral System (m-진법 모듈러 지수연산)

  • Lee, Sang-Un
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The performance and practicality of cryptosystem for encryption, decryption, and primality test is primarily determined by the implementation efficiency of the modular exponentiation of $a^b$(mod n). To compute $a^b$(mod n), the standard binary squaring still seems to be the best choice. But, the d-ary, (d=2,3,4,5,6) method is more efficient in large b bits. This paper suggests m-numeral system modular exponentiation. This method can be apply to$b{\equiv}0$(mod m), $2{\leq}m{\leq}16$. And, also suggests the another method that is exit the algorithm in the case of the result is 1 or a.

Implementation of a LSB-First Digit-Serial Multiplier for Finite Fields GF(2m) (유한 필드 GF(2m)상에서의 LSB 우선 디지트 시리얼 곱셈기 구현)

  • Kim, Chang-Hun;Hong, Chun-Pyo;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In this paper we, implement LSB-first digit-serial systolic multiplier for computing modular multiplication $A({\times})B$mod G ({\times})in finite fields GF $(2^m)$. If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of regularity, modularity, and unidirectional data flow, it shows good extension characteristics with respect to m and L.

Scalable Hierarchical Group Key Establishment using Diffie-Hallman Key Exchange (Diffie-Hallman 키 교환을 이용한 확장성을 가진 계층적 그룹키 설정 프로토콜)

  • 박영희;정병천;이윤호;김희열;이재원;윤현수
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.3-15
    • /
    • 2003
  • The secure group communication enables the members, which belong to the same group, to communicate each other in a secure and secret manner. To do so, it is the most important that a group key is securely distributed among them and also group membership is efficiently managed. In detail, the generation, the distribution and the refreshment of a group key would be highly regarded in terms of low communication and computation complexity. In this paper, we show you a new protocol to generate a group key which will be safely shared within a group, utilizing the 2-party Diffie-Hellman key exchange protocol and the complete binary tree. Our protocol has less complexity of computation per group member by substituting many parts of exponentiation computations for multiplications. Consequently, each group member needs constant computations of exponentiation and multiplication regardless of the group size in the protocol and then it has less complexity of the computation than that of any other protocols.

Design of high-speed RSA processor based on radix-4 Montgomery multiplier (래딕스-4 몽고메리 곱셈기 기반의 고속 RSA 연산기 설계)

  • Koo, Bon-Seok;Ryu, Gwon-Ho;Chang, Tae-Joo;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.29-39
    • /
    • 2007
  • RSA is one of the most popular public-key crypto-system in various applications. This paper addresses a high-speed RSA crypto-processor with modified radix-4 modular multiplication algorithm and Chinese Remainder Theorem(CRT) using Carry Save Adder(CSA). Our design takes 0.84M clock cycles for a 1024-bit modular exponentiation and 0.25M cycles for a 512-bit exponentiations. With 0.18um standard cell library, the processor achieves 365Kbps for a 1024-bit exponentiation and 1,233Kbps for two 512-bit exponentiations at a 300MHz clock rate.

Montgomery Multiplier Base on Modified RBA and Hardware Architecture (변형된 RBA를 이용한 몽고메리 곱셈기와 하드웨어 구조)

  • Ji Sung-Yeon;Lim Dae-Sung;Jang Nam-Su;Kim Chang-Han;Lee Sang-Jin
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.351-355
    • /
    • 2006
  • RSA 암호 시스템은 IC카드, 모바일 및 WPKI, 전자화폐, SET, SSL 시스템 등에 많이 사용된다. RSA는 모듈러 지수승 연산을 통하여 수행되며, Montgomery 곱셈기를 사용하는 것이 효율적이라고 알려져 있다. Montgomery 곱셈기에서 임계 경로 지연 시간(Critical Path Delay)은 세 피연산자의 덧셈에 의존하고 캐리 전파를 효율적으로 처리하는 문제는 Montgomery 곱셈기의 효율성에 큰 영향을 미친다. 최근 캐리 전파를 제거하는 방법으로 캐리 저장 덧셈기(Carry Save Adder, CSA)를 사용하는 연구가 계속 되고 있다. McIvor외 세 명은 지수승 연산에 최적인 CSA 3단계로 구성된 Montgomery 곱셈기와 CSA 2단계로 구성된 Montgomery 곱셈기를 제안했다. 시간 복잡도 측면에서 후자는 전자에 비해 효율적이다. 본 논문에서는 후자보다 빠른 연산을 수행하기 위해 캐리 전파 제거 특성을 가진 이진 부호 자리(Signed-Digit, SD) 수 체계를 사용한다. 두 이진 SD 수의 덧셈을 수행하는 잉여 이진 덧셈기(Redundant Binary Adder, RBA)를 새로 제안하고 Montgomery 곱셈기에 적용한다. 기존의 RBA에서 사용하는 이진 SD 덧셈 규칙 대신 새로운 덧셈 규칙을 제안하고 삼성 STD130 $0.18{\mu}m$ 1.8V 표준 셀 라이브러리에서 지원하는 게이트들을 사용하여 설계하고 시뮬레이션 하였다. 그 결과 McIvor의 2 방법과 기존의 RBA보다 최소 12.46%의 속도 향상을 보였다.

  • PDF

Scalable Dual-Field Montgomery Multiplier Using Multi-Precision Carry Save Adder (다정도 CSA를 이용한 Dual-Field상의 확장성 있는 Montgomery 곱셈기)

  • Kim, Tae-Ho;Hong, Chun-Pyo;Kim, Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.131-139
    • /
    • 2008
  • This paper presents a scalable dual-field Montgomery multiplier based on a new multi-precision carry save adder(MP-CSA), which operates in both types of finite fields GF(p) and GF($2^m$). The new MP-CSA consists of two carry save adders(CSA). Each CSA is composed of n = [w/b] carry propagation adders(CPA) for a modular multiplication with w-bit words, where b is the number of dual field adders(DFA) in a CPA. The proposed Montgomery multiplier has roughly the same timing complexity compared with the previous result, however, it has the advantage of reduced chip area requirements. In addition, the proposed circuit produces the exact modular multiplication result at the end of operation unlike the previous architecture. Furthermore, the proposed Montgomery multiplier has a high scalability in terms of w and m. Therefore, it can be used to multiplier over GF(p) and GF($2^m$) for cryptographic applications.

A Study on the Modulus Multiplier Speed-up Throughput in the RSA Cryptosystem (RSA 암호시스템의 모듈러 승산기 처리속도 향상을 위한 연구)

  • Lee, Seon-Keun;Jeung, Woo-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.217-223
    • /
    • 2009
  • Recently, the development of the various network method can generate serious social problems. So, it is highly required to control security of network. These problems related security will be developed and keep up to confront with anti-security field such as hacking, cracking. The way to preserve security from hacker or cracker without developing new cryptographic algorithm is keeping the state of anti-cryptanalysis in a prescribed time by means of extending key-length. In this paper, the proposed montgomery multiplication structured unit array method in carry generated part and variable length multiplication for eliminating bottle neck effect with the RSA cryptosystem. Therefore, this proposed montgomery multiplier enforce the real time processing and prevent outer cracking.

  • PDF