(Design of New Architecture for Simultaneously Computing Multiplication and Squaring over $GF(2^m)$ based on Cellular Automata)

$GF(2^m)$상에서 셀룰러 오토마타를 이용한 곱셈/제곱 동시 연산기 설계

  • Published : 2002.05.01

Abstract

In this paper, a new architecture that can simultaneously process modular multiplication and squaring on GF(2$^{m}$ ) in m clock cycles by using the cellular automata is presented. This can be used efficiently for the design of the modular exponentiation on the finite field which is the basic computation in most public key crypto systems such as Diffie-Hellman key exchange, EIGamal, etc. Also, the cellular automata architecture is simple, regular, modular, cascadable and therefore, can be utilized efficiently for the implementation of VLSI.

본 논문에서는 셀룰러 오토마타를 이용하여, GF(2/sup m/)상에서 모듈러 곱셈과 제곱의 연산을 m 클럭 사이클 만에 동시에 처리할 수 있는 연산기를 설계하였다. 이는 Diffie-Hellman key exchange, EIGamal과 같은 대부분의 공개키 암호화 시스템에서의 기본 연산인 유한 필드 상의 모듈러 지수승 연산기 설계에 효율적으로 이용될 수 있다. 또한 셀룰러 오토마타는 간단하고도 규칙적이며, 모듈화 하기 쉽고 계층화 하기 쉬운 구조이므로 VLSI 구현에도 효율적으로 활용될 수 있다.

Keywords

References

  1. R.J. McEliece, Finite Fields for Computer Scientists and Engineerings, New York: Kluwer Academic, 1987
  2. W. Diffie and M.E. Hellman, 'New directions in cryptography,' IEEE Trans. on information theory, vol. 22, pp. 644-654, November 1976 https://doi.org/10.1109/TIT.1976.1055638
  3. T. ElGamal, 'A public key cryptosystem and a signature scheme based on discrete logarithms,' IEEE Trans. on information theory, vol. 31(4), pp. 469-472, July 1985 https://doi.org/10.1109/TIT.1985.1057074
  4. A.J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993
  5. C.-S. YEH, IRVING S. REED, T.K. TRUONG, 'Systolic Multipliers for Finite Fields $GF(2^m)$,' IEEE Trans. on computers, vol. C-33, no. 4, pp. 357-360, April 1984 https://doi.org/10.1109/TC.1984.1676441
  6. C.L. Wang, J.L. Lin, 'Systolic Array Implementation of Multipliers for Finite Fields GF(2m),' IEEE Trans. on circuits and systems, vol. 38, no. 7, pp. 796-800, July 1991 https://doi.org/10.1109/31.135748
  7. P.L. Montgomery, 'Modular multiplication without trial division,' Mathematics of Computation, 44(170) : 519-521, April 1985 https://doi.org/10.2307/2007970
  8. M. Delorme, J. Mazoyer, Cellular Automata, KLUWER ACADEMIC PUBLISHERS, 1999
  9. STEPHEN WOLFRAM, Cellular Automata and Complexity, Addison-Wesly Publishing Company, 1994
  10. ELWYN R. BERLEKAMP, 'Bit-Serial Reed-Solomon Encoders,' IEEE Trans. on information theory, vol. IT-28, no. 6, pp. 869-874, November 1982 https://doi.org/10.1109/TIT.1982.1056591
  11. C.Parr, 'Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents,' IEEE Trans. on computers, vol. 48, no. 10, pp. 1025-1034, October 1999 https://doi.org/10.1109/12.805153
  12. P.P. Choudhury, R. Barua, 'Cellular Automata Based VLSI Architecture for Computing Multiplication And Inverse In GF(2m),' IEEE Proceeding of the 7th International Conference on VLSI Design, pp. 279-282, January 1994 https://doi.org/10.1109/ICVD.1994.282702
  13. Knuth, THE ART OF COMPUTER PROGRAMMING, vol. 2/Seminumerical Algorithms, ADDISON-WESLEY, 1969