• Title/Summary/Keyword: 면내진동

Search Result 93, Processing Time 0.022 seconds

Study on Measurements of the In-Plane Vibration Intensity In a Beam With a Damped End (감쇠 단을 갖는 보의 면내 진동인텐시티 측정에 관한 연구)

  • Kim Chang-Yeol;Kil Hyun-Gwon;Hong Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.371-378
    • /
    • 2005
  • The objective or this paper is to measure the in-plane vibration intensity of a beam with a damped end that means the magnitude and direction of vibration power. Three experimental methods have been implemented to measure the in-plane vibration intensity over the beam. The first method is the accelerometer array method using two accelerometers. The second method is the frequency response function method using the only one accelerometer. The third method is the reference accelerometer method using a fixed reference accelerometer and another moving accelerometer. Those methods have been used to measure the spatial distribution of in-plane vibration intensity over the beam. The results obtained with those methods have been compared with each other. The results have been compared with an input power. It showed that the frequency response function method and the reference accelerometer method as well as the accelerometer array method can be effectively used to measure the in-plane vibration intensity in beams.

In-plane Free Vibrations of Horseshoe Circular Arch (마제형 원호 아치의 면내 자유진동)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1043-1052
    • /
    • 2014
  • This paper deals with in-plane free vibrations of the horseshoe circular arch. Simultaneous ordinary differential equations governing free vibration of the arch are derived with respect to the radial and tangential deformations. Particularly, differential equations are obtained under the arc length coordinate rather than the angular one in order to extend the horseshoe arch whose subtended angle is greater than ${\pi}$ radians. The differential equations are numerically solved for calculating the natural frequencies accompanying with the corresponding mode shapes. In parametric studies, effects of the rotatory inertia, slenderness ratio and circumferential arc length ratio on frequency parameters are extensively discussed.

Measurement of the Torsional Vibrations in Nonuniform Waveguides by Using an In-plane Laser Vibrometer (광학적 면내 진동 측정기어 의한 불균일 도파관의 비틀림 진동 측정)

  • Jeong, Hyung-Gon;Kim, Jin-Oh
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.240-245
    • /
    • 2004
  • Torsional characteristics of nonuniform circular waveguides were studied experimentally by using an in-plane laser vibrometer. The circumferential displacement along the axis of a rod was measured as a response of the torsional oscillation excited at one end of the rod. The experimental results obtained for a stepped circular rod and a conically-tapered rod were compared with theoretical predictions. The results of this paper show the possibility of using the in-plane laser vibrometer for the measurement of torsional vibrations.

Noise and vibration analysis of structures by using SEA (SEA를 이용한 구조물의 소음.진동 해석)

  • 김현실;강현주;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.44-49
    • /
    • 1995
  • 본 연구를 통해 평판으로 구성된 구조물의 SEA 해석시 면내파의 영향을 살펴보았다. 개발된 프로그램 "SEANV"를 실제구조물에 적용하여 해석을 수행한 결과 면내파의 영향은 소음원에서 거리가 멀어질수록 더 크게 나타남을 알 수 있었다. 빌딩이나 선박등 대형구조물의 경우 고체음이 전파에 의한 소음의 발생이 지배적이므로 면내파의 무시는 SEA 해석결과에 큰 영향을 미치게 된다. 본 연구는 음장요소와 평판요소만 고려하였으나 대부분이 구조물이 상기 요소로만 SEA modelling이 가능하므로 본 연구에서 개발된 프로그램의 활용분야는 매우 다양할 것으로 예상된다. 것으로 예상된다.

  • PDF

Measurements of Radial In-plane Vibration Characteristics of Piezoelectric Disk Transducers (원판형 압전 변환기의 면내 방사 진동 특성 측정)

  • Kim, Dae Jong;Oh, Se Hwan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • The paper experimentally deals with the radial in-plane vibration characteristics of disk-shaped piezoelectric transducers. The radial in-plane motion, which is induced due to Poisson's ratio in the piezoelectric disk polarized in the thickness direction, was measured by using an in-plane laser vibrometer, and the natural frequencies were measured by using an impedance analyzer. The experimental results have been compared with theoretical predictions obtained by simplified theoretical and finite-element analyses. It appears that the fundamental mode of a piezoelectric disk transducer is a radial mode and its radial displacement distribution from the center to the perimeter is not monotonic but shows maximum slightly apart from the perimeter. The theoretically-calculated fundamental frequencies agree well with the finite-element results for small thickness-to-diameter ratio, and they are accurate within 7 % error for the ratio up to 0.4.

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads (면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석)

  • Han, Sung-Cheon;Choi, Samuel
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.191-203
    • /
    • 2006
  • The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

Planar Free Vibrations of Catenary Arcs (현수 곡선부재의 면내 자유진동 해석)

  • Lee, Byoung Koo;Oh, Sang Jin;Suh, Ju Suhk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.19-28
    • /
    • 1990
  • The main purpose of this paper is to present both fundamental and some higher natural frequencies of catenary arcs. The differential equations governing planar free vibrations for these arcs are derived, in which the rotatory inertia is included, as non-dimensional forms and solved numerically to obtain frequencies and mode shapes. The hinged-hinged and clamped-clamped end constraints are applied in numerical examples. The lowest four natural frequencies are reported as the functions of non -dimensional system parameters; the slenderness ratio and the rise to span length ratio. The effects of rotatory inertia on natural frequencies are reported and some typical mode shapes are also presented.

  • PDF

In-Plane Free Vibration Analysis of Plates (평판의 면내 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun;Byun, Jung-Hwan;Jang, Duck-Jong;Moon, Deok-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.291-296
    • /
    • 2007
  • To analyze accurately the free vibration of a structure by using the finite element method (FEM), we model the structure as a numerical model with many degrees-of-freedom. However the FEM needs much computation time and storage in this case. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane free vibration analysis of plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the plates with various shapes and is effective to in-plane free vibration analysis of plates.

  • PDF