DOI QR코드

DOI QR Code

Free Vibration Analysis of Laminated Composite Stiffened Plates under the In-plane Compression and Shear Loads

면내 압축 및 전단하중을 받는 적층 복합 보강 판의 자유진동해석

  • Received : 2005.10.06
  • Accepted : 2005.11.23
  • Published : 2006.01.31

Abstract

The vibration characteristics of composite stiffened laminated plates with stiffener is presented using the assumed natural strain 9-node shell element. To compare with previous research, the stiffened plates are composed of carbon-epoxy composite laminate with a symmetric stacking sequence. Also, the result of the present shell model for the stiffener made of composite material is compared with that of the beam model. In the case of torsionally weak stiffener, a local buckling occurs in the stiffener. In this case, the stiffener should be idealized by using the shell elements. The current investigation concentrates upon the vibration analysis of rectangular stiffened and unstiffened composite plates when subjected to the in-plane compression and shear loads. The in-plane compression affect the natural frequencies and mode shapes of the stiffened laminated composite plates and the increase in magnitude of the in-plane compressive load reduces the natural frequencies, which will become zero when the in-plane load is equal to the critical buckling load of the plate. The natural frequencies of composite stiffened plates with shear loads exhibit the higher values than the case of without shear loads. Also, the intersection, between the curves of frequencies against in-plane loads, interchanges the sequence of some of the mode shapes as a result of the increase in the inplane compressive load. The results are compared with those available in the literature and this result shows that the present shell model for the stiffened plate gives more accurate results. Therefore, the magnitude, direction type of the in-plane shear and compressive loads in laminated composite stiffened plates should be selected properly to control the specific frequency and mode shape. The Lanczos method is employed to solve the eigenvalue problems.

가정 변형률 9절점 쉘 요소를 이용하여 스티프너로 보강된 적층 복합 보강판의 진동 특성을 연구하였다. 기존의 연구결과들과 비교하기 위하여 대칭으로 적층된 carbon-epoxy 복합재료 적층 판을 사용하였다. 또한 본 연구에서 스티프너를 쉘로 모델링 한 결과들은 보 요소로 모델링 된 결과들과 비교하였다. 비틀림에 약한 스티프너의 경우에 국부 좌굴이 스티프너에서 발생할 수 있다. 이 경우에 스티프너는 쉘로 모델링 하여야 한다. 본 연구는 면내 압축 및 전단하중을 받는 적층 복합 보강 판과 보강되지 않은 적층 복합 판의 연구에 집중되어 있다. 면내 압축 및 전단하중은 적층복합 판의 고유진동수와 진동 모우드를 변화시키고 압축 하중의 증가는 압축 하중이 임계 좌굴하중에 도달하여 진동수가 0 이 될 때 까지 진동수를 감소시킨다. 면내 전단하중의 작용은 그렇지 않은 경우에 비하여 진동수를 증가시켰다. 또한 진동수와 면내 하중 관계 곡선의 교차는 적층 복합 보강판의 진동 모우드를 교체 시킨다. 본 연구에서 제시한 쉘 요소로 적층 복합 보강판을 해석한 결과 참고문헌과 비교하여 매우 정확한 결과를 나타내었다. 그러므로 보강된 적층 복합 판의 면내 전단 및 압축하중의 종류와 크기는 특정한 진동수와 모우드 형상의 조절을 위해 적절하게 선택되어야 한다. 고유치 문제를 풀기 위하여 Lanzcos 방법을 사용하였다.

Keywords

References

  1. 한성천, 장석윤(2002) 수정된 Arc-length 방법을 이용한 복합재료 Lamella 돔의 점탄성적 비선형 해석, 대한토목학회 논문집, 대한토목학회, 제22권 제2-A호, 243-252
  2. 한성천, 최삼열(2004) 변형률 보간 9절점 쉘 요소를 이용한 적층복합판과 쉘의 선형 정적 해석 및 자유진동 해석, 한국전산구조공학회 논문집, 한국전산구조공학회, 제 17권 제4호, 279-293
  3. Belytschko, T., Wong, B. L. and Stolarski, R. (1989) Assumed strain stabilization procedure for the 9-node lagrange shell element, Int. J. Num. Meth. Eng., 28, 385-414 https://doi.org/10.1002/nme.1620280210
  4. Groesberg, S.W. (1968) Advanced Mechanics, Wiley, New York
  5. Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004) An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells, Struct. Eng. Mech., 18(6), 807-829 https://doi.org/10.12989/sem.2004.18.6.807
  6. Huang, H.C. and Hinton, E. (1986) A new nine node degenerated shell element with enhanced membrane and shear interpolation, Int. J. Num. Meth. Eng., 22, 73-92 https://doi.org/10.1002/nme.1620220107
  7. Jang, J. and Pinsky, P.M. (1987) An assumed covariant strain based 9-node shell element, Int. J. Num. Meth. Eng., 24, 2389-2411 https://doi.org/10.1002/nme.1620241211
  8. Kanok-Nukulchai, W. (1979), A simple and efficient finite element for general shell analysis, Int. J. Num. Meth. Eng., 14, 179-200 https://doi.org/10.1002/nme.1620140204
  9. Kanok-Nukulchai, Wand Wong, W.K. (1988) Element-based Lagrangian formulation for large-deformation analysis, Comput. Struct., 30, 967-974 https://doi.org/10.1016/0045-7949(88)90136-8
  10. Kant, T. and Swaminathan, K. (2001) Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos. Struct., 53, 73-85 https://doi.org/10.1016/S0263-8223(00)00180-X
  11. Kim, K.D., Liu, G.Z. and Han, S.C. (2005) A resultant 8-node solid-shell element for geometrically nonlinear analysis, Comput. Mech., 35(5), 315-331 https://doi.org/10.1007/s00466-004-0606-9
  12. Kim, K.D., Lomboy, G.R. and Han, S.C. (2003) A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells, Comput. Mech., 30(4), 330-342 https://doi.org/10.1007/s00466-003-0415-6
  13. Lee, D.M. and Lee, I. (1995) Vibration analysis of anisotropic plates with eccentric stiffeners, Comput. Struct., 57(1), 99-105 https://doi.org/10.1016/0045-7949(94)00593-R
  14. Lee, S.J. and Han, S.E. (2001) Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element, J. Sound Vibr., 241, 601-633
  15. Lee, S.W. and Pian, T.H.H. (1978) Improvement of plate and shell finite elements by mixed formulation, AIAA J., 16, 29-34 https://doi.org/10.2514/3.60853
  16. Liu, W.H. and Chen, W.C. (1992) Vibration analysis of skew cantilever plates with stiffeners, J. Sound Vibr., 159(1), 1-11 https://doi.org/10.1016/0022-460X(92)90447-6
  17. Mukherjee, A. and Mukhopadhyay, M. (l988)Finite element free vibration of eccentrically stiffened plates, Comput. Struct., 30(6), 1303-1317 https://doi.org/10.1016/0045-7949(88)90195-2
  18. Olson, M.D. and Hazell, C.R. (1977) Vibration studies on some integral rib-stiffened plates, J. Sound Vibr., 50, 43-61 https://doi.org/10.1016/0022-460X(77)90550-8
  19. Palani, G.S., Iyer, N.R. and Rao, T.V.S.R.A. (1992) An efficient finite element model for static and vibration analysis of eccentrically stiffened plates-shells, Comput. Struct., 43(4), 651-661 https://doi.org/10.1016/0045-7949(92)90506-U
  20. Park, T.H., Kim K.D. and Han, S.C. (2006) Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element, Composites Part B: Engineering, 37(2-3), 237-248 https://doi.org/10.1016/j.compositesb.2005.05.007
  21. Reddy, J.N. (1997) Mechanics of Laminated Composite Plates, CRC Press, Florida
  22. Rikards, R., Chate, A. and Ozolinsh, Q. (2001) Analysis for buckling and vibrations of composite stiffened shells and plates, Compos Stuct., 51, 361-370 https://doi.org/10.1016/S0263-8223(00)00151-3
  23. Simo, J.C. and Hughes, T.J.R. (1986) On the variational formulations of assumed strain methods, J. Appl. Mech., ASME, 53, 51-54 https://doi.org/10.1115/1.3171737