• Title/Summary/Keyword: 등매개변수 요소

Search Result 22, Processing Time 0.027 seconds

Nonlinear Fracture Finite Element Model of Reinforced Concrete Plates (철근콘크리트판의 비선형 파괴 유한요소 모델에 관한 연구)

  • Jin, Chi Sub;Cha, Young Soo;Eom, Jong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1988
  • A general finite element method is developed to analyze reinforced concrete plates under dead loads and monotonically increasing live loads. This method can be used to trace the load-deformation response and crack propagation through elastic, inelastic and ultimate ranges. The internal concrete and steel stresses can also be determined for any stage of the response history. A layered 8 node isoparametric element taking account of coupling effect between the membrane and the bending action is developed. An incremental tangent stiffness method is used to obtain a numerical solution. Validity of the method is studied by comparing the numerical solutions with other results.

  • PDF

Free Vibration Analysis of Thermoelastic Structure (열탄성 구조물의 자유진동 특성)

  • Cho, Hee-Keun;Park, Young-Won;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.201-208
    • /
    • 2000
  • A numerical analysis algorithm for thermally loaded structures has been proposed and compared with the general free vibration approach to determine the characteristics of thermal load effects in vibration structures. The field of numerical inspection includes free vibration analysis, transient heat transfer analysis and thermal stress analysis. The key point of the analysis of thermally loaded structure is the method of parallel time integration between transient heat transfer and free vibration simultaneously. The results of the study demonstrate the computation of the specific total external force vector and stiffness matrix. The proposed analysis method can be applied to both heated and cooled structure vibration analysis.

  • PDF

Material Nonlinear Fracture Analysis of Reinforced Concrete Shell (철근콘크리트 쉘의 재료비선형 파괴해석)

  • Jin, Chi Sub;Cha, Young Soo;Jang, Heui Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 1989
  • A finite element program for material nonlinear fracture analysis of reinforced concrete shell was developed. This method can be used to trace the load-displacement response and crack propagation through the elastic and inelastic ranges. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. The validity of the present program was proved by comparing the numerical results with Hedgren's experimental data.

  • PDF

Development of an Enhanced 8-node Hybrid/Mixed Plane Stress Element : HQ8-14βElement (8절점 Hybrid/Mixed 평면응력요소)

  • Chun, Kyoung Sik;Park, Won Tae;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.319-326
    • /
    • 2006
  • A new enhanced 8-node hybrid/mixed plane stress elements based on assumed stress fields and modifed shape functions has been presented. The assumed stress fields are derived from the non-conforming displacement modes, which are less sensitive to geometric distortion. Explicit expression of shape functions is modifed so that it can represent any quadratic fields in Cartesian coordinates under the same condition as 9-node isoparametric element. The newly developed element has been designated as 'HQ8-$14{\beta}$'. The presented element is compared with existing elements to establish its accuracy and efficiency. Over a wide range of mesh distortions, the element presented here is found to be exceptionally accurate in predicting displacements.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

Numerical Computation of Dynamic Stress Intensity Factors in Axisymmetric Problems (축대칭 문제에서의 동적 응력확대계수의 계산)

  • 이성희;심우진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • In this paper, the finite element method for the elastodynamic axisymmetric fracture analysis is presented in matrix form through the application of the Galerkin method to the time integral equations of motion with no inertia forces. Isoparametric quadratic quadrilateral element and triangular crack tip singular elements with one-quarter node are used in the mesh division of the finite element model. To show the validity and accuracy of the proposed method, the infinite elastic medium with the penny shaped crack is solved first and compared with the analytical solution and the numerical results by the finite difference method and the boundary element method existing in the published literatures, and then the dynamic stress intensity factors of solid and hollow cylinders of finite dimensions haying penny-shaped cracks and internal and external circumferential tracks are computed in detail.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

A Study for the Improvement of Top End Piece Structural Strength (상단고정체의 구조강도 개선을 위한 연구)

  • Song, Kee-Nam;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 1989
  • As a part of the design of the top end piece(TEP) for the 14$\times$14 reload fuel, various models of top end piece structure were analysed, using the ANSYS code, under fuel assembly shipping and handling load conditions. The 3-dimensional isoparametric elements were used in each model. By rearrangement of slots and holes on the adapter plate, without violating the design requirements, and also by changing the enclosure attachment method used on the adapter plate from pin joints to through-weld, the load carving capacity of the adapter plate was greatly strengthened. These concepts were adopted for the design of the 14$\times$14 reload fuel.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF

Analyzing Method of Deformation of Model Ground in Plane Strain (평면변형율 상태에 있는 모형지반의 변형해석법)

  • 임종철;주인곤
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 1992
  • One of the most important things to analyze model ground test in plane strain is to observe deformation, accurately, In this paper, the analyzing method of ground deformation by using photos of points on membrane attached on transparent acryle plate of side wall of model ground box is described. First order 4-node isoparametric elements are used to calculate strains of ole cents.

  • PDF