• Title/Summary/Keyword: 등가 보 요소

Search Result 93, Processing Time 0.028 seconds

Transient Modeling of Single-Electron Transistors for Circuit Simulation (회로 시뮬레이션을 위한 단일전자 트랜지스터의 과도전류 모델링)

  • 유윤섭;김상훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.1-12
    • /
    • 2003
  • In this study, a regime where independent treatment of SETs in transient simulations is valid has been identified quantitatively. It is found that as in the steady-state case, each SET can be treated independently even in the transient case when the interconnection capacitance is large enough. However, the value of the load capacitance $C_{L}$of the interconnections for the independent treatment of SETs is approximately 10 times larger than that of the steady state case. A compact SET transient model is developed for transient circuit simulation by SPICE. The developed model is based on a linearized equivalent circuit and the solution of master equation is done by the programming capabilities of the SmartSpice. Exact delineation of several simulation time scales and the physics-based compact model make it possible to accurately simulate hybrid circuits in the time scales down to several tens of pico seconds. The simulation time is also shown to depend on the complexity level of the transient model.l.

Ride Comfort Analysis of High-Speed Train with Flexible Car Bodies (차체의 유연성을 고려한 고속철도 차량 승차감 해석)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Koo, Ja-Choon;Lee, Sang-Won;Lee, Sung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • In the development of high-speed trains, ride comfort is an important factor that determines the quality of the train. In this study, the ride comforts of high-speed trains with rigid and flexible car bodies were evaluated. The rail irregularity is used as an exciting source of the car-body bounce motion. The complex extruded structures of the car-body are modeled as shell structures using the calculated equivalent stiffness of the flexible model. The numerical results show that the ride of the rigid-body model improves as the speed increases, which is unreasonable. In contrast, the relationship between ride comfort and speed in the case of flexible-body model is reasonable. Thus, it is confirmed that the flexibility of the car body needs to be taken into consideration while fabricating a high-speed train.

Response Analysis of Buried Pipeline Subjected to Longitudinal Permanent Ground Deformation (종방향 영구지반변형에 대한 지중 매설관로의 거동특성 해석)

  • 김문겸;임윤묵;김태욱;박종헌
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.51-61
    • /
    • 2002
  • In this research, a numerical algorithm is developed for the response analysis of burined pipelines considering longitudinal permanent ground deformation(PGD) due to liquefaction induced lateral spreading. Buried pipelines and surrounding soil are modeled as continuous pipelines using the beam elements and a series of elasto-plastic springs represented for equivalent soil stiffness, respectively. Idealized various PGD patterns based on the observation of PGD are used as a loading configuration and the length of the lateral spread zone is considered as loading parameter. Numerical results are verified with other research results and efficient applicability of developed procedure is shown. Analyses are performed by varying different parameters such as PGD pattern, pipe diameter and pipe thickness. Through these procedures, relative influences of various parameters on the response of buried pipeline subject to longitudinal PGD are investigated.

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer (볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안)

  • Kim, Jungsoon;Kim, Haeun;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.270-277
    • /
    • 2021
  • In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

Modeling of Size-Dependent Strengthening in Particle-Reinforced Aluminum Composites with Strain Gradient Plasticity (변형률 구배 소성을 고려한 입자 강화 알루미늄 복합재의 크기 종속 강화 모델링)

  • Suh, Yeong-Sung;Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.745-751
    • /
    • 2011
  • This study proposes finite element modeling of dislocation punching at cooling after consolidation in order to calculate the strength of particle-reinforced aluminum composites. The Taylor dislocation model combined with strain gradient plasticity around the reinforced particle is adopted to take into account the size-dependency of different volume fractions of the particle. The strain gradients were obtained from the equivalent plastic strain calculated during the cooling of the spherical unit cell, when the dislocation punching due to CTE (Coefficient of Thermal Expansion) mismatch is activated. The enhanced yield stress was observed by including the strain gradients, in an average sense, over the punched zone. The tensile strength of the SiCp/Al 356-T6 composite was predicted through the finite element analysis of an axisymmetric unit cell for various sizes and volume fractions of the particle. The predicted strengths were found to be in good agreement with the experimental data. Further, the particle-size dependency was clearly established.

Ultimate Analysis of Reinforced Concrete Beams (철근콘크리트 보의 극한해석)

  • 김태형;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • The purpose of this paper is to present an analysis method which can exactly analyze load-deflection relationships. crack propagations and stresses and strains of steel reinforccnlent and concrete in hehaviors of elastic, mclastic and ultlmate ranges of reinforced concretc beams under monotonically increasing loads. For these purposes, the material nonlinearities are taken into account by comprising the tension. compression and shear models of cracked concrete and a model for reinforcement in the concrete. Smeared crack model is used as a modeling of concrete. The steel reinforcement is assumed to be in an uniaxial stress state and modeled srncaretl layers of eqivalent thickness and line elernents for correct positiori arid behavior. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzed and compared with those from other researchers. As a results, this method shown in 3.5-15(%) error is correct.

Improvement of the Vibrational Characteristics According to Attachment of Bellows and Evaluation of Bellows Optimal Position in Automobile Exhaust System (벨로우즈의 장착에 따른 자동차 배기계의 동특성 개선 및 벨로우즈의 최적위치 평가)

  • 고병갑;이완익;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.21-32
    • /
    • 1994
  • The Problem of mechanical vibration is investigated for an automotive exhaust system. The vibrational reduction effect is systematically evaluated according to the attachment of the exhaust system. Moreover, the optimal attachment position of bellows is determined from the viewpoint of vibration isolation. The structure is analysed by the finite element technique where the geometry, the mass, the stiffness and the damping properties of the exhaust pipe are modeled. The validity of the developed model is verified by comparing with the experimental results. An optimization is carried out by the quadratic approximation algorithm. The reaction transferred to an automobile body by the hanger is considered ad the objective function. It is shown that the exhaust system which has the bellows at the optimal position is more effective for the vibrational characteristics than the others. It is also proved that this analytical method is quite useful in the design stage of the exhaust system.

  • PDF

Friction and It's Nonlinear Compensation for Rotor Position Control (회전축계 위치제어에 대한 마찰과 비선형 보상)

  • 장용훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.157-162
    • /
    • 1990
  • 기계의 정밀도 향상을 위하여는 기계에 대한 보다 정확한 해석을 요구한다. 그러나 실제 기계 시스템은 마찰, Backlash, Saturation등과 같은 비서형 특 성을 가지고 있어 시스템의 해석 및 제어가 어렵게 된다. 특히, 축, 링크, 기 어, 풀리, 베어링등의 기계요소에서는 마찰로 인해 정밀도가 크게 덜어지고 있어, 마찰에 의한 동특성 및 제어는 많은 연구자들에 의해 관심의 대상이 되어 왔다. 마찰력을 고려한 기계시스템의 운동은 정지상태 근처에서 마찰력 의 변화가 심한 비선형 동특성을 보이고 있어 그 해석에 어려움을 겪고 있 다. 실제 마찰이 저속에서 고급 비선형임에도 불구하고 가장 널리 사용되는 형태의 모델로서 쿨통 마찰을 고려한 운동방정식 조차 비선형성으로 인하여 해석에 어려움이 따르고 있다. 마찰은 오랜동안 연구되어 오면서 Fig.1, Fig2 와 같이 등가선형점성 감쇠, 쿨통마찰, 정적마찰로 모델화되거나 이들의 조 합으로 나타내었다[1-5]. 마찰력은 시간영역에서도 연구되어 Walrath[7]는 Fig.3-a의 속도가 역전되는 지점에서 마찰토오크가 .+-.Tf를 공유하는 문제 를 고려하기 위해, Fig.3-b와 같이 동적마찰모델을 사용하였다. 최근의 연구 로서 Armstrong[7]은 마찰의 위치의존성을 고려한 정확한 마찰모델을 설정 하여 개루프제어에 적용, 좋은 제어특성을 확인하였고, Canudas[8]는 저속영 역에서 overcompensation시 limit cycle과 gain의 관계를 해석하였다.

  • PDF

P-△ Analysis for Design of Reinforced Concrete Slender Columns (철근 콘크리트 장주 설계를 위한 P-△ 해석)

  • Lee, Jae Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.87-96
    • /
    • 1992
  • Moment Magnifier Method has been generally used in estimation of total column moment induced by geometric nonlinearity for reinforced concrete slender column design, however second order analysis such as P-${\Delta}$ method has been recommended by Code for better result. Member stiffness estimation is the most significant factor for accuracy of second order analysis. Equivalent Column stiffness based on theoretically obtained moment-curvature-thrust relationship has been proposed and the analytical results of the proposed method, MacGregor-Hage Method, Furlong's Method, and Moment Magnifier Method are compared with experimentally obtained data.

  • PDF

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.