• Title/Summary/Keyword: 동적전압주파수변환

Search Result 14, Processing Time 0.027 seconds

Voltage Selection Methodology for DVFS Overhead Minimization (동적 전압 주파수 스케일링 오버헤드 최소화를 위한 전압 선택 방법론)

  • Chang, Jin Kyu;Han, Tae Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.854-857
    • /
    • 2015
  • As the number of devices integrated on system-on-chip(SoC) increases exponentially, energy reduction technology is essential. Dynamic Voltage and Frequency Scaling (DVFS) is a very effective technique for reducing power consumption. Since it requires complex voltage regulators and PLL circuits, DVFS tends to have significant overheads. In this paper, we propose a new voltage selection algorithm to minimize transition overhead for multiprocessor SoC (MPSoC). Simulation results show that proposed algorithm appears less energy consumption with transition overhead even though maintains performance.

  • PDF

Dynamic Voltage and Frequency Scaling based on Buffer Memory Access Information (버퍼 메모리 접근 정보를 활용한 동적 전압 주파수 변환 기법)

  • Kwak, Jong-Wook;Kim, Ju-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As processor platforms are continuously moving toward wireless mobile systems, embedded mobile processors are expected to perform more and more powerful, and therefore the development of an efficient power management algorithm for these battery-operated mobile and handheld systems has become a critical challenge. It is well known that a memory system is a main performance limiter in the processor point of view. Although many DVFS studies have been considered for the efficient utilization of limited battery resources, recent works do not explicitly show the interaction between the processor and the memory. In this research, to properly reflect short/long-term memory access patterns of the embedded workloads in wireless mobile processors, we propose a memory buffer utilization as a new index of DVFS level prediction. The simulation results show that our solution provides 5.86% energy saving compared to the existing DVFS policy in case of memory intensive applications, and it provides 3.60% energy saving on average.

Design of a 6bit 250MS/s CMOS A/D Converter using Input Voltage Range Detector (입력전압범위 감지회로를 이용한 6비트 250MS/s CMOS A/D 변환기 설계)

  • Kim, Won;Seon, Jong-Kug;Jung, Hak-Jin;Piao, Li-Min;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.16-23
    • /
    • 2010
  • This paper presents 6bit 250MS/s flash A/D converter which can be applied to wireless communication system. To solve the problem of large power consumption in flash A/D converter, control algorithm by input signal level is used in comparator stage. Also, input voltage range detector circuit is used in reference resistor array to minimize the dynamic power consumption in the comparator. Compared with the conventional A/D converter, the proposed A/D converter shows 4.3% increase of power consumption in analog and a seventh power consumption in digital, which leads to a half of power consumption in total. The A/D converter is implemented in a $0.18{\mu}m$ CMOS 1-poly 6-metal technology. The measured results show 106mW power dissipation with 1.8V supply voltage. It shows 4.1bit ENOB at sampling frequency 250MHz and 30.27MHz input frequency.

Active-RC Channel Selection Filter with 40MHz Bandwidth and Improved Linearity (개선된 선형성을 가지는 R-2R 기반 5-MS/s 10-비트 디지털-아날로그 변환기)

  • Jeong, Dong-Gil;Park, Sang-Min;Hwang, Yu-Jeong;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.149-155
    • /
    • 2015
  • This paper proposes 5-MS/s 10-bit digital-to-analog converter(DAC) with the improved linearity. The proposed DAC consists of a 10-bit R-2R-based DAC, an output buffer using a differential voltage amplifier with rail-to-rail input range, and a band-gap reference circuit for the bias voltage. The linearity of the 10-bit R-2R DAC is improved as the resistor of 2R is implemented by including the turn-on resistance of an inverter for a switch. The output voltage range of the DAC is determined to be $2/3{\times}VDD$ from an rail-to-rail output voltage range of the R-2R DAC using a differential voltage amplifier in the output buffer. The proposed DAC is implemented using a 1-poly 8-metal 130nm CMOS process with 1.2-V supply. The measured dynamic performance of the implemented DAC are the ENOB of 9.4 bit, SNDR of 58 dB, and SFDR of 63 dBc. The measured DNL and INL are less than +/-0.35 LSB. The area and power consumption of DAC are $642.9{\times}366.6{\mu}m^2$ and 2.95 mW, respectively.

Design of 6bit CMOS A/D Converter with Simplified S-R latch (단순화된 S-R 래치를 이용한 6비트 CMOS 플래쉬 A/D 변환기 설계)

  • Son, Young-Jun;Kim, Won;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.963-969
    • /
    • 2008
  • This paper presents 6bit 100MHz Interpolation Flash Analog-to-Digital Converter, which can be applied to the Receiver of Wireless Tele-communication System. The 6bit 100MHz Flash Analog-to-Digital Converter simplifies and integrates S-R latch which multiplies as the resolution increases. Whereas the conventional NAND based S-R latch needed eight MOS transistors, this Converter was designed with only six, which makes the Dynamic Power Dissipation of the A/D Converter reduced up to 12.5%. The designed A/D Converter went through $0.18{\mu}m$ CMOS n-well 1-poly 6-metal process to be a final product, and the final product has shown 282mW of power dissipation with 1.8V of Supply Voltage, 100MHz of conversion rate. And 35.027dBc, 31.253dB SFDR and 4.8bits, 4.2bits ENOB with 12.5MHz, 50MHz of each input frequency.

A PLL Based 32MHz~1GHz Wide Band Clock Generator Circuit for High Speed Microprocessors (PLL을 이용한 고속 마이크로프로세서용 32MHz~1GHz 광대역 클럭발생회로)

  • Kim, Sang-Kyu;Lee, Jae-Hyung;Lee, Soo-Hyung;Chung, Kang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.235-244
    • /
    • 2000
  • This paper presents a low power PLL based clock geneator circuit for microprocessors. It generates 32MHz${\sim}$1GHz clocks and can be integrated inside microprocessor chips. A high speed D Flip-Flop is designed using dynamic differential latch and a new Phase Frequency Detector(PFD) based on this FF is presented. The PFD enjoys low error characteristics in phase sensitivity and the PLL using this PFD has a low phase error. To improve the linearity of voltage controlled oscillator(VCO) in PLL, the voltage to current converter and current controlled oscillator combination is suggested. The resulting PLL provides wide lock range and extends frequency of generated clocks over 1 GHz. The clock generator is designed by using $0.65\;{\mu}m$ CMOS full custom technology and operates with $11\;{\mu}s$ lock-in time. The power consumption is less than 20mW.

  • PDF

A 3 V 12b 100 MS/s CMOS DAC for High-Speed Communication System Applications (고속통신 시스템 응용을 위한 3 V 12b 100 MS/s CMOS D/A 변환기)

  • 배현희;이명진;신은석;이승훈;김영록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.685-691
    • /
    • 2003
  • This work describes a 3 V 12b 100 MS/s CMOS digital-to-analog converter (DAC) for high-speed communication system applications. The proposed DAC is composed of a unit current-cell matrix for 8 MSBs and a binary-weighted array for 4 LSBs, considering linearity, power consumption, chip area, and glitch energy. The low-glitch switch driving circuit is employed to improve the linearity and the dynamic performance. Current sources of the DAC are laid out separately from the current-cell switch matrix core. The prototype DAC is implemented in a 0.35 urn n-well single-poly quad-metal CMOS technology. The measured DNL and INL of the prototype DAC are within $\pm$0.75 LSB and $\pm$1.73 LSB, respectively, and the spurious-free dynamic range (SFDR) is 64 dB at 100 MS/s with a 10 MHz input sinewave. The DAC dissipates 91 mW at 3 V and occupies the active die area of 2.2 mm ${\times}$ 2.0 mm.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

Design of a Inverter-Based 3rd Order ΔΣ Modulator Using 1.5bit Comparators (1.5비트 비교기를 이용한 인버터 기반 3차 델타-시그마 변조기)

  • Choi, Jeong Hoon;Seong, Jae Hyeon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.39-46
    • /
    • 2016
  • This paper describes the third order feedforward delta-sigma modulator with inverter-based integrators and a 1.5bit comparator for the application of audio signal processing. The proposed 3rd-order delta-sigma modulator is multi-bit structure using 1.5 bit comparator instead of operational amplifier. This delta-sigma modulator has high SNR compared with single-bit 4th-order delta-sigma modulator in a low OSR. And it minimizes power consumes and simplified circuit structure using inverter-based integrator and using inverter-based integrator as analogue adder. The modulator was designed with 0.18um CMOS standard process and total chip area is $0.36mm^2$. The measured power cosumption is 28.8uW in a 0.8V analog supply and 66.6uW in a 1.8V digital supply. The measurement result shows that the peak SNDR of 80.7 dB, the ENOB of 13.1bit and the dynamic range of 86.1 dB with an input signal frequency of 2.5kHz, a sampling frequency of 2.56MHz and an oversampling rate of 64. The FOM (Walden) from the measurement result is 269 fJ/step, FOM (Schreier) was calculated as 169.3 dB.