• Title/Summary/Keyword: 도형 개념

Search Result 168, Processing Time 0.02 seconds

컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료 개발 및 활용 방안

  • Im, Hae-Gyeong;Park, Eun-Yeong
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.563-589
    • /
    • 2002
  • 고학년으로 갈수록 지필 환경에만 머무르는 현실 속에서 생활 및 예술 작품 등에서 수학적 원리와 개념을 발견하도록 하는 테셀레이션 수업은 학생들의 흥미와 호기심을 유발하고 수학의 아름다움을 느끼게 하는 것 이상으로 기하학적 사고의 기초를 학습하는데 도움을 줄 수 있다. 이에 본 연구는 4학년까지 적용되고 있는 7차 교육과정을 중심으로 새롭게 등장하고 있는 테셀레이션에 대한 이해 및 교수 학습 자료가 체계적으로 정비되어 있지 못한 현실적인 문제의 해결 방안으로서 테셀레이션을 활용한 수학 학습의 내용을 분석하여 교사들에게는 테셀레이션의 이해 및 교수 학습 자료로서 , 학생들에게는 수학의 기하적 개념들을 쉽고 재미있게 학습할 수 있는 학습도구로서 활용할 수 있도록 하는 것을 목적으로 테셀레이션을 구현할 수 있는 컴퓨터 소프트웨어를 활용하여 테셀레이션 교수 학습 자료를 개발하였고 이를 위해 다음과 같은 연구 내용을 설정하였다. 가. 테셀레이션의 정의와 예 그리고 종류를 알아보고 테셀레이션 속의 수학적 개념을 활용방법과 함께 제시한다. 나. 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 테셀레이션을 적용할 수 있는 내용영역을 분석하고 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한다. 다. 제작된 테셀레이션 교수 학습 자료의 효과적 활용을 위한 활용 방안을 탐색한다. 라. 제작된 테셀레이션 교수 학습 자료의 활용 효과를 알아보기 위해 적용 실험을 하고 이에 대한 학생들의 반응을 분석하여 학습의 효과를 밝힌다. 제작된 테셀레이션 교수 학습 자료의 적용 실험을 위하여 광주대성초등학교 6학년 한 반을 선정하였고 약 4주에 걸쳐 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료를 투입하여 4번의 활동수업을 실시하였다. 수업 후 작성된 학습지와 소감문 및 연구자에 의해 관찰된 수업내용을 바탕으로 다음과 같은 연구 결과를 얻을 수 있었다. 첫째, 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한 결과 지필적 환경에서 제한적이었던 탐구하고 조작해보는 활동을 할 수 있는 역동적인 수학 실험실 환경이 제공됨으로써 도구적 이해가 아닌 관계적 이해를 하는 것을 확인할 수 있었다. 수학적 개념을 암기하는 것에서 벗어나 자연스런 조작을 통해 학생들이 개념을 이해하고 탐구하는 과정 속에서 학생들은 수학을 공부한다기 보다는 수학 속에서 재미있게 놀이한다는 생각을 가지고 수업에 참여하였고 배우는 즐거움을 알고 자신감을 가지며 더 나아가 창의적인 생각을 하도록 하는 기회를 줄 수 있었다. 둘째, 테셀레이션은 우리 생활 속에서 쉽게 발견할 수 있는 것으로 수학이 단순히 책에서만 한정되지 않고 다양한 분야 즉 디자인, 생활 속에서의 벽지문양과 포장지, 예술작품 등에 활용되고 있음을 체험함으로써 수학이 실생활에 광범위하게 활용되고 있음을 알게 하였다. 역으로 생활 속에서의 테셀레이션을 통해 수학적 개념을 찾는 과정을 통해 수학이 아름다우면서도 실용적이라는 생각을 심어줄 수 있었다. 셋째, 테셀매니아, GSP, 캐브리, 거북기하 등 평소 수업에서는 활용도가 적은 컴퓨터 소프트웨어를 활용함으로써 컴퓨터 소프트웨어 자체에서 오는 호기심뿐만이 아니라 직접 조작하여 테셀레이션 작품과 개념을 익히고 새로운 작품과 학습을 해 내는 과정을 통해 자신감과 성취감 등에 있어 큰 변화가 있음을 발견할 수 있었다. 컴퓨터 기능이 미숙한 학생의 경우 처음에는 당황해 하고 어려워하는 부분도 있었으나 조작할 시간적 여유를 주고 교사와 우수한 학생들이 도우미로서 역할을 잘해내어 나중에는 큰 어려움 없이 마칠 수 있었다. 테셀레이션이라는 용어가 아직은 생소한 현장에서 교수 학습 자료가 부족하고 그에 따른 이해도 부족한 현실 속에서 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료가 교수 학습 현장에 투입되어 유용하게 사용될 수 있는지 그 가능성을 조사한 것을 목적으로 한 본 연구의 결과로서 테셀레이션이라는 주제는 도형 영역과 규칙성과 함수 영역에서 평면 도형의 각과 모양 등의 성질을 탐구하게 하고, 대칭변환의 개념을 효율적으로 학습하게 할 수 있고, 반복되는 모양에서 규칙성을 발견하고 부분과 전체를 파악하여 패턴을 인지할 수 있게 하며 제작하고 분석하는 과정을 통해 여러 가지 수학적 개념과 수학적 창의성, 수학적인 아름다움을 느끼게 할 수 있음을 발견할 수 있었다. 또한 테셀레이션은 수학적 개념은 물론 수학과 미술, 수학과 일상 생활과의 연결성을 논의하고 확인하는 데 흥미로운 주제가 될 수 있다. 초등학교 교육과정에서 새롭게 도입되고 있는 테셀레이션을 활용하여 지도하기 위한 교수 학습 자료로 유용하게 사용될 수 있고 앞으로는 테셀레이션과 관련된 내용이 직접적으로 교육과정 내에서 다루어지고, 또한 테셀레이션을 적용한 수업이 학생들의 기하학적 사고 및 수학적 태도에 미치는 영향과 관련한 연구가 뒤따라야 할 것으로 본다.

  • PDF

Rigidity of surfaces (곡면의 강성의 역사)

  • Kim, Ho-Bum
    • Journal for History of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.49-60
    • /
    • 2007
  • In this article, the concept of rigidity of smooth surfaces in the three dimensional Euclidean space which naturally arises in elementary geometry is introduced, and the natural process of the development of rigidity theory for compact surfaces and its generalizations are investigated.

  • PDF

Examining Students' Conceptions about the Area of Geometric Figures (초등학교 학생들의 넓이 개념 이해도 조사 - 초등학교 6학년 학생들을 중심으로-)

  • Na, Gwisoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2012
  • This research intends to examine how 6th graders (age 12) conceptualize the area of geometric figures. In this research, 4 problems were given to 122 students, which the 4 problems correspond to understanding area concept, finding the area of geometric figures-including rectangular, parallelogram, and triangle, writing the area formula for finding area of geometric figures, and explaining the reason why the area formula holds. As the results of the study, we identified that students revealed the most low achievement in the understanding area concept, and lower achievement in explaining the reason why the area formula holds, writing the area formula, finding the area of geometric figures in order. In based on the results, we suggested the didactical implication for improving the students' conception about the area of geometric figures.

  • PDF

Textbook analysis on the application of concave polygons in congruence and symmetrical teaching and learning (합동과 대칭의 교수학습에서 오목다각형의 활용에 대한 교과서 분석)

  • Kang, Yunji
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.215-230
    • /
    • 2024
  • Congruences and symmetry are familiar concepts that can be encountered in everyday life. In order to effectively understand and acquire these concepts, the role of appropriate visual examples is important. This analysis examined various visual examples used in the process of learning the concepts of congruence and symmetry in elementary mathematics textbooks and focused on the use of convex polygons and concave polygons. As a result of the analysis, various types of polygons were used as visual examples for teaching and learning of congruence and symmetry in textbooks. The frequency of use of concave polygons was higher in the order of congruence, line symmetry, and point symmetry, and it was confirmed that it was used more frequently in the process of exploring properties than in the introduction of the concept. Based on these results, a plan to utilize concave polygons in teaching and learning of congruence and symmetry was sought.

Development of Diagram Learning System for e-Learning (e-Learning을 위한 도형학습 시스템 개발)

  • Im, Mi-Ae;Goh, Byung-Oh
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.3
    • /
    • pp.523-532
    • /
    • 2005
  • Moving figures and piling up some boxes are newly the introduced studying contents in the 7th curriculum of mathematics and it will be able to form the sense of space of the students. Against the studying contents for the sense of space formation, the teachers of site speak instruction is very difficult and the student's scores are low. Elementary school mathematics studying which inclusive of figure studying is the most effective when they operate the actual object. But in the school site, the instruction with actual object is very difficult because many reasons. And web based studying data system which is for forming the sense of space the students is not abundant because it started initially. From this dissertation, studying contents will be taken out and web base figure studying system will be designed and embodied. The interaction will be active in the system. Student will be able to understand the principle by the medium of the animation from the system and they can improve their sense of space by the interesting game.

  • PDF

An Analysis of a Teacher's Formalization Procedure Based on Students' Various Solution Methods in Teaching the Area of Plane Figures (평면도형의 넓이 수업에서 학생들의 다양한 해결 방법에 근거한 교사의 형식화 도출 과정 분석)

  • Kim, SangHwa;Pang, JeongSuk;Jung, YooKyung
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.847-866
    • /
    • 2013
  • The purpose of this study was to analyze students' various solution methods revealed in the lessons of finding out the area of plane figures, and to explore instructional implications on how to draw meaningful formalization out of such multiple methods. The teacher in this study tended to select a few solution methods that were easy for students to understand and to induce formalization. An analysis of students' solution methods and the process of formalization showed that students need to understand what parts of the length of the given plane figure they should know, and to identify the base, height, and diagonal line of the figure. The analysis also showed that it was effective to choose the solution methods that were used by many students and that could be easily transformed into a concise formula. Based on these results, this paper provides instructional suggestions for a teacher to orchestrate classroom discussion toward formalization based on students' multiple solution methods.

  • PDF

An Analysis on Teaching Quadrilaterals in Elementary School Mathematics Textbooks (초등학교 수학 교과서에 나타난 사각형 지도 방법에 대한 분석)

  • Kim, Hyun-Jeong;Kang, Wan
    • Education of Primary School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.141-159
    • /
    • 2008
  • The purpose of this study id to delve into how elementary mathematics textbook deal with the quadrilaterals from a view of Didactic Transposition Theory. Concerning the instruction period and order, we have concluded the following: First, the instruction period and order of quadrilaterals were systemized when the system of Euclidian geometry was introduced, and have been modified a little bit since then, considering the psychological condition of students. Concerning the definition and presentation methods of quadrangles, we have concluded the following: First, starting from a mere introduction of shape, the definition have gradually formed academic system, as the requirements and systemicity were taken into consideration. Second, when presenting and introducing the definition, quadrilaterals were connected to real life. Concerning the contents and methods of instruction, we have concluded the following: First, the subject of learning has changed from textbook and teachers to students. Second, when presenting and introducing the definition, quadrilaterals were connected to real life. Third, when instructing the characteristics and inclusive relation, students could build up their knowledge by themselves, by questions and concrete operational activities. Fourth, constructions were aimed at understanding of the definition and characteristics of the figures, rather than at itself.

  • PDF

테크놀러지를 이용한 고교수학의 수열의 지도에 관하여

  • Kim, Tae-Wan;Kim, Hyang-Suk
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.109-122
    • /
    • 2003
  • 현재 초, 중, 고등학교의 수학교육 현실은 수학 개념의 정확한 이해에 초점을 맞추지 못하고 공식의 암기와 그것을 이용하여 단순한 문제 풀이에 시간을 많이 할애함으로써 수학의 기본적인 개념이나 기호의 정확한 사용법을 인지하지 못하고 계산 기능적인 면으로 치우치는 경향이 많이 나타나며, 문제 풀이의 창의적인 상황이 제시되지 않는 상태에서 교사 중심의 문제풀이 방법에만 의존하고 있다. 이러한 문제점 속에서 창의적인 문제 해결 방안을 구상할 수 있는 사고력의 배양에 소홀함이 있다고 볼 수 있다. 따라서 학생 스스로 의미를 파악하여 학습 할 수 있는 교수 방법이나 학습 방법에 대한 연구는 현실적으로 매우 시급한 상황에 처해있다. 이러한 상황에서 많은 수학교육자들은 학생들이 좀 더 쉽게 수학의 개념에 접근 할 수 있게 하기 위하여 많은 노력을 하고 있다. 그러한 노력 중의 하나로 테크놀러지를 이용한 수학교육을 말 할 수 있는데, 이는 실제로 수학교육에 긍정적인 영향을 준다고 알려져 있다. 본 논문은 현 고등학교 수학I의 등차수열에 관한 내용을 Mathematica를 이용하여 다각수(도형수)로부터 등차수열의 개념을 유도하였다.

  • PDF

A Study on the Types of Mathematical Justification Shown in Elementary School Students in Number and Operations, and Geometry (수와 연산.도형 영역에서 초등 3학년 학생들의 수학적 정당화 유형에 관한 연구)

  • Seo, Ji-Su;Ryu, Sung-Rim
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.85-108
    • /
    • 2012
  • The comprehensive implication in justification activity that includes the proof in the elementary school level where the logical and formative verification is hard to come has to be instructed. Therefore, this study has set the following issues. First, what is the mathematical justification type shown in the Number and Operations, and Geometry? Second, what are the errors shown by students in the justification process? In order to solve these research issues, the test was implemented on 62 third grade elementary school students in D City and analyzed the mathematical justification type. The research result could be summarized as follows. First, in solving the justification type test for the number and operations, students evenly used the empirical justification type and the analytical justification type. Second, in the geometry, the ratio of the empirical justification was shown to be higher than the analytical justification, and it had a difference from the number and operations that evenly disclosed the ratio of the empirical justification and the analytical justification. And third, as a result of analyzing the errors of students occurring during the justification process, it was shown to show in the order of the error of omitting the problem solving process, error of concept and principle, error in understanding the questions, and technical error. Therefore, it is prudent to provide substantial justification experiences to students. And, since it is difficult to correct the erroneous concept and mistaken principle once it is accepted as familiar content that it is required to find out the principle accepted in error or mistake and re-instruct to correct it.

Axioms underlying area of triangle and volume of triangular pyramid and Hilbert't third problem (삼각형의 넓이와 삼각뿔의 부피에 내재된 공리와 힐베르트의 세 번째 문제)

  • Do, Jonghoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.4
    • /
    • pp.371-385
    • /
    • 2015
  • In this paper we investigate the axioms defining area and volume so that revisit area formula for triangle, volume formula for triangular pyramid, and related contents in school mathematics from the view point of axiomatic method and Hilbert's third problem.