• Title/Summary/Keyword: 도플러 넓어짐 분광법

Search Result 10, Processing Time 0.025 seconds

동시계수 양전자 소멸 측정을 이용한 Cz-Si 구조 특성

  • Lee, Seung-Jae;Lee, Gwon-Hui;Lee, Jong-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.287-287
    • /
    • 2011
  • 동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 n, p형 Cz-Si의 시료에 양성자를 0, 4 MeV 에너지와 조사량의 변화에 의한 결함을 측정하였으며, 고체 구조 특성에 대하여 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 511 keV 감마선 스펙트럼의 수리적 해석 방법인 S-변수와 W-변수를 사용하여, 구조 변화를 측정하였다. 양성자 조사에너지의 세기에 따라 결함이 증가하였으며, 양성자의 조사량의 변화에 대하여는 큰 변화가 없었다.

  • PDF

The Defect Characterization of $Gd_2O_2S$: Tb Crystals by Positron Annihilation Spectroscopy (양전자 소멸 분광법을 이용한 $Gd_2O_2S$ : Tb 결함 특성)

  • 이종용;김창규
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • DBPAS has been used to characterize atomic size defect structures in materials. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. As the samples were exposed by X-ray increasing the exposed doses from 3, 6, and 9 Gy with 6 MV and 15 MV, respectively and also irradiated by X-ray as the medical applications used for in 0, 2, 4 and 6 years. The S-parameter values were increased as increasing the exposed time and the energies, that indicated the defects generate more. The S-parameters of the samples with medical treatment is varied from 0.4932 to 0.4956.

The Characterization of MgB2 Thin Film by Slow Positron Annihilation Spectroscopy (저에너지 양전자 소멸 분광법을 이용한 MgB2 박막 구조 특성)

  • Lee, C.Y.;Kang, W.N.;Nagai, Y.;Inoue, K.;Hasegawa, M.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.160-164
    • /
    • 2008
  • The Characterization of $MgB_2$ Thin Film by Slow Positron Annihilation Spectroscopy Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $MgB_2$ superconductor film, which were performed at 30 K and 50 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values were increased then decreased while the positron implantation energies were increasing, that indicated the diffusion into the samples. The S-parameters of the anisotropic 1 ${\mu}m$ $MgB_2$ thin film which were implanted by positrons at 10 keV are 0.567 at 30 K and 0.570 at 50 K. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the $MgB_2$ superconductor.

양전자 소멸 측정에 의한 n, p형 실리콘에서의 결함 측정

  • Lee, Gwon-Hui;Jeong, Ui-Chan;Park, Seong-Min;Lee, Jong-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.336-336
    • /
    • 2012
  • 수명 측정법과 동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 p형과 n형 실리콘 시료에 0, 3.98 MeV 에너지를 가진 $0.0{\sim}20.0{\times}10^{13}$ protons/$cm^2$ 양성자 빔 조사에 의한 결함을 측정하여 실리콘 결함 특성에 대하여 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 감마선 스펙트럼의 전자 밀도 에너지를 수리적 해석 방법인 S-변수와 열린 부피 결함에 대한 측정법으로서 양전자 수명 ${\tau}1$${\tau}2$, 이에 따른 밀도 I1과 I2를 사용하여, 시료의 구조 변화를 측정하였다. 본 연구에서 측정된 S-변수와 양전자 수명은 시료에 조사된 양성자의 빔 에너지에 따라 변화하기보다 양성자 조사량의 변화에 따라 결함이 증가하였으며, 양전자 수명 측정과 같은 경향을 보여준다. SRIM의 결과로써, 양성자 조사 에너지에 따른 Bragg 피크 때문에 양성자는 시료의 특정 깊이에 주로 결함을 형성하여 시료 전체에는 결함으로 잘 나타나지 않기 때문이다. 빔의 조사량에 따른 결함의 영향이 더 큰 것으로 나타났다.

  • PDF

The Characterization of Nb3Ge by Slow Positron Annihilation Spectroscopy (저에너지 양전자 소멸 분광법을 이용한 Nb3Ge 박막 특성)

  • Lee, C.Y.;Bae, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.489-494
    • /
    • 2010
  • Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $Nb_3Ge$ superconductor film, which were performed from 20 K to 300 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values between 0.598 and 0.594 were decreased while the temperature were decreasing, that indicated the voids into the samples. The temperature dependence came from specific positron trapping rate into the vacancy-type defects. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the Nb3Ge superconductor.

Investigation of Proton Irradiated Effect on n, p type Silicon by Positron Annihilation Method (양전자 소멸 측정에 의한 n, p형 실리콘 구조 특성)

  • Lee, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.225-232
    • /
    • 2012
  • It is described that the proton beam induceds micro-size defects and electronic deep levels in n or p type single crystal silicon. Positron lifetime and Coincidence Doppler Broadening Positron Annihilation Spectroscopy were applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 3.98 MeV proton beams ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values strongly depend on the irradiated proton beam, that indicated the defects generate more. Positron lifetime shows that positrons trapped in vacancies and lifetime ${\tau}_2$ increased according to proton irradiation.

The Characterization of Proton Irradiated BaSrFBr:Eu Film by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy (동시계수 양전자 소멸 측정에 의한 양성자 조사된 BaSrFBr:Eu 박막 특성)

  • Kim, J.H.;Nagai, Y.;Lee, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.447-452
    • /
    • 2009
  • Enhance signal-to-noise ratio, Coincidence Doppler Broadening positron method has been applied to study of characteristics of BaSrFBr:Eu film sample. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The films were exposed by 0, 3, 5, and 7.5 MeV proton beams ranging from 0 to $10^{13}$ ptls. The S-parameter values were increased as increasing the exposed time and the energies, that indicated the defects generate more.

Proton Irradiated Cz-Si by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy (동시계수 양전자 소멸 측정에 의한 양성자 조사된 Si 구조 특성)

  • Lee, K.H.;Lee, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.367-373
    • /
    • 2011
  • It is described that the proton beam induces micro defects and electronic deep levels in Cz single crystal silicon. Enhance signal-to-noise ratio, Coincidence Doppler Broadening Positron Annihilation Spectroscopy has been applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 4.0 MeV proton beams ranging from 0 to ${\sim}10^{14}$ ptls. The S-parameter values were increased as increasing the irradiated proton beam, that indicated the defects generate more.

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method (양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성)

  • Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.341-347
    • /
    • 2013
  • The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

The Defect Characterization of Luminescence Thin Film by the Positron Annihilation Spectroscopy (양전자 소멸 측정을 이용한 발광 박막 구조 결함 특성)

  • Lee, Kwon Hee;Bae, Suk Hwan;Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.250-256
    • /
    • 2013
  • It is described that the proton beam induces micro-size defects and electronic deep levels in luminescence Thin Film. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) and Positron lifetime Spectroscopy were applied to study of characteristics of a poly crystal samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S-parameter value. The samples were exposed by 3.0 MeV proton beams with the intensities ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values decreased as increased the proton beam, that indicates the protons trapped in vacancies. Lifetime ${\tau}_1$ shows that positrons are trapped in mono vacancies. Lifetime ${\tau}_2$ is not changed according to proton irradiation that indicate the cluster vacancies of the grain structure.