Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.5.250

The Defect Characterization of Luminescence Thin Film by the Positron Annihilation Spectroscopy  

Lee, Kwon Hee (Department of Physics, Hannam University)
Bae, Suk Hwan (Department of Radiological Science, Konyang University)
Lee, Chong Yong (Department of Physics, Hannam University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.5, 2013 , pp. 250-256 More about this Journal
Abstract
It is described that the proton beam induces micro-size defects and electronic deep levels in luminescence Thin Film. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) and Positron lifetime Spectroscopy were applied to study of characteristics of a poly crystal samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S-parameter value. The samples were exposed by 3.0 MeV proton beams with the intensities ranging between 0 to ${\sim}10^{14}$ particles. The S-parameter values decreased as increased the proton beam, that indicates the protons trapped in vacancies. Lifetime ${\tau}_1$ shows that positrons are trapped in mono vacancies. Lifetime ${\tau}_2$ is not changed according to proton irradiation that indicate the cluster vacancies of the grain structure.
Keywords
Proton beam; Positron lifetime; CDBPAS; Image plate; Luminescence thin film;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 K. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).
2 L. Henry, M. F. Barthe, C. Corbel, P. Desgardin, and G. Blondiaux, Phys. Rev. B 67, 115210 (2003).   DOI
3 R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors, (Springer, Heidelberg, 1999).
4 L. S. Vlasenko, M. P. Vlasenko, V. A. Kozlov, and V. V. Kozlovskii, Semiconductors 33, 1059 (1999).   DOI
5 J. H. Kim, Y. Nagai, and C. Y. Lee, J. Korean Vac. Soc. 18, 447 (2009).   DOI   ScienceOn
6 N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987).   DOI   ScienceOn
7 T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).
8 N. Y. Arutyunov, M. Elsayed, R. Krause-Rehberg, V. V. Emtsev, G. A. Oganesyan, and V. V. Kozlovski, J. Phys. Condens. Matter 25, 035801 (2013).   DOI   ScienceOn
9 G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Kor. J. Mater. Res. 18, 427 (2008).   DOI   ScienceOn
10 T. Matsumura, T. Matsubara, T. Hiraiwa, K. Horie, M. Kuze, K. Miyabayashi, A. Okamura, T. Sawada, S. Shimizu, T. Shinkawa, T. Tsunemi, and M. Yoso, Nucl. Instru. and Methods in Phys. Res. Sec. A 603, 301 (2009).   DOI   ScienceOn
11 C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Kor. J. Mater. Res. 16, 455 (2006).   DOI   ScienceOn
12 Y. Amemiya and J. Miyahara, Nature (London) 336, 89 (1988).   DOI   ScienceOn
13 M. Sonoda, M. Takano, J. Miyahara, and H. Kato, Radiology 148, 833 (1983).   DOI
14 S. I. Kim and C. W. Lee, J. Korean Vac. Soc. 16, 348 (2007).   DOI   ScienceOn
15 C. Y. Lee, J. H. Kwon, H. H. Kim, and J. M. Jeong, J. Kor. Phys. Soc. 51, 1172 (2007).   DOI   ScienceOn
16 C. Dietze, T. Hangleiter, P. Willems, P. J. R. Lebians, L. Struye, and J. M. Spaeth, J. Appl. Phys. 80, 1074 (1996).   DOI   ScienceOn
17 P. Hackenschmied, G. zeitler, M. Batentschuk, E. Hell, and W. Knupfer, Nucl. Instru. Meth. Phys. Res. 191, 163 (2002).   DOI   ScienceOn
18 C. Y. Lee, J. Korean Vac. Soc. 21, 225 (2012).   DOI   ScienceOn
19 K. H. Lee, and C. Y. Lee, J. Korean Vac. Soc. 20, 367 (2011).   DOI   ScienceOn
20 R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Nucl. Instru. Meth. Phys. Res. B 206, 85 (2003).   DOI   ScienceOn