DOI QR코드

DOI QR Code

Proton Irradiated Cz-Si by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy

동시계수 양전자 소멸 측정에 의한 양성자 조사된 Si 구조 특성

  • Lee, K.H. (Department of Physics, Hannam University) ;
  • Lee, C.Y. (Department of Physics, Hannam University)
  • Received : 2011.07.19
  • Accepted : 2011.08.17
  • Published : 2011.09.30

Abstract

It is described that the proton beam induces micro defects and electronic deep levels in Cz single crystal silicon. Enhance signal-to-noise ratio, Coincidence Doppler Broadening Positron Annihilation Spectroscopy has been applied to study of characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The samples were exposed by 4.0 MeV proton beams ranging from 0 to ${\sim}10^{14}$ ptls. The S-parameter values were increased as increasing the irradiated proton beam, that indicated the defects generate more.

동시 계수 도플러 넓어짐 양전자 소멸 분광법으로 p형과 n형 실리콘 시료에 0, 4.0 MeV 에너지의 1.0, $2.0{\times}10^{13}$ protons/$cm^2$ 양성자 빔 조사에 의한 결함을 측정하여 실리콘 구조 특성에 대하여 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 감마선 스펙트럼의 수리적 해석 방법인 S-변수와 W-변수를 사용하여, 시료의 구조 변화를 측정하였다. 본 연구에서 측정된 S-변수는 시료에 조사된 양성자의 빔 에너지에 따라 변하지 않고 거의 일정한 값을 보인 반면, 양성자 조사량의 변화에 따라 결함이 증가하였으며, 그 이유는 양성자 조사 에너지에 따른 Bragg 피크 때문에 에너지는 시료의 특정 깊이에 주로 결함을 형성하여 시료전체에는 결함으로 잘 나타나지 않기 때문으로 판단된다. 그리고 빔의 조사량에 따른 결함의 영향이 큰 것으로 나타났다.

Keywords

References

  1. Teresa Oh, J. Korean Vacuum Soc. 20, 189 (2011). https://doi.org/10.5757/JKVS.2011.20.3.189
  2. G. P. Willeke, Sol. Energ. Mater. Sol. Cell. 72, 191 (2002). https://doi.org/10.1016/S0927-0248(01)00164-7
  3. B. J. Kang, S. Park, S. H. Lee, H. Kim, B. G. Shin, S. Kwon, J. W. Byeon, S. Yoon, and D. Kim, Korean J. Mater. Res. 20, 617 (2010). https://doi.org/10.3740/MRSK.2010.20.11.617
  4. E. H. Molen, J. M. Oblak, and O. H. Kriege, Met. Trans. 2, 1627 (1971).
  5. H. E. Collins, Met. Trans. 5, 189 (1974).
  6. Chunqing He, M. Muramatsua, T. Ohdairaa, N. Oshimaa, A. Kinomuraa, R. Suzukia, and Y. Kobayashia, Radiation Phys. and Chem. 76, 204 (2007). https://doi.org/10.1016/j.radphyschem.2006.03.036
  7. Y. Dekhtyar, D. A. Levina, and V. S. Mikhalenkov, Sov. Phys. Dokl. 9, 492 (1964).
  8. Y. Lee, W. N. Kang, Y. Nagai, K. Inoue, and M. Hasegawa, J. Korean Vacuum Soc. 17, 160 (2008). https://doi.org/10.5757/JKVS.2008.17.2.160
  9. H. Kim, Y. Nagai, and C. Y. Lee, J. Korean Vacuum Soc. 18, 447 (2009). https://doi.org/10.5757/JKVS.2009.18.6.447
  10. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).
  11. S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993). https://doi.org/10.1063/1.352905
  12. Z. Jin, G. Niu, J. D. Cressler, C. J. Marshall, P. W. Marshall, H. S. Kim, R. A. Reed, and D. L. Harame, Nuclear Science IEEE Transactions 48, 2244 (2001). https://doi.org/10.1109/23.983203
  13. L. S. Vlasenko, M. P. Vlasenko, V. A. Kozlov, and V. V. Kozlovskii, Semiconductors 33, 1059 (1999). https://doi.org/10.1134/1.1187864
  14. J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Korean J. Mater. Res. 18, 427 (2008). https://doi.org/10.3740/MRSK.2008.18.8.427
  15. J. J. Kelly and R. M. Lambrecht, Phys. Lett. A 60, 475 (1977). https://doi.org/10.1016/0375-9601(77)90060-3
  16. N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987). https://doi.org/10.1103/PhysRevB.35.4166
  17. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).
  18. S. Fatima, B. G. Svensson, C. Jagadish, Optoelectronic and Microelectronic Materials and Devices Proceedings, Conference on 154 (1996).
  19. K. Saarinen, J. Nissila, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautojarvi, and C. Corbel, Phys. Rev. Lett. 82, 1883 (1999). https://doi.org/10.1103/PhysRevLett.82.1883

Cited by

  1. Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.341
  2. The Defect Characterization of Luminescence Thin Film by the Positron Annihilation Spectroscopy vol.22, pp.5, 2013, https://doi.org/10.5757/JKVS.2013.22.5.250