DOI QR코드

DOI QR Code

The Characterization of MgB2 Thin Film by Slow Positron Annihilation Spectroscopy

저에너지 양전자 소멸 분광법을 이용한 MgB2 박막 구조 특성

  • Lee, C.Y. (Physics Department, Hannam University) ;
  • Kang, W.N. (Physics Department, Sungkyunkwan University) ;
  • Nagai, Y. (Institute for Materials Research, Tohoku University) ;
  • Inoue, K. (Institute for Materials Research, Tohoku University) ;
  • Hasegawa, M. (Institute for Materials Research, Tohoku University)
  • Published : 2008.03.30

Abstract

The Characterization of $MgB_2$ Thin Film by Slow Positron Annihilation Spectroscopy Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $MgB_2$ superconductor film, which were performed at 30 K and 50 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values were increased then decreased while the positron implantation energies were increasing, that indicated the diffusion into the samples. The S-parameters of the anisotropic 1 ${\mu}m$ $MgB_2$ thin film which were implanted by positrons at 10 keV are 0.567 at 30 K and 0.570 at 50 K. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the $MgB_2$ superconductor.

저속 에너지 도플러 넓어짐 양전자 소멸 분광법으로 $MgB_2$ 박막내의 원자 크기 정도 고체 구조 특성에 대하여 조사하였다. 양전자와 전자의 쌍소멸로 발생하는 511keV 감마선 스펙트럼의 수리적 해석 방법인 S-변수를 사용하여, 상전이 근처 온도에서 박막의 구조 변화를 측정하였다. 비등방성 구조로 된 $MgB_2$ 박막에서 초전도 특성을 갖는 상전이 온도 근처에서 S-변수를 측정하였다. 양전자의 입사 에너지 10keV에서 측정된 S-변수의 최고치는 박막의 온도가 30K에서 0.567이고, 50 K에서는 0.570로 큰 변화는 없었다. 이 결과로부터 양전자가 Boron 층의 초 전자와 소멸하기 보다는 Mg층 근처의 상 전자와 소멸하는 것으로 판단된다. $MgB_2$의 박막의 외층은 Mg층으로 이루어졌다고 할 수 있다.

Keywords

References

  1. P. Hautojarvi, C. Corbel, in: A. Dupasquier, A. P. Mills Jr.(Eds.), Positron Spectroscopy of Solids, IOS Press, Ohmsha, Amsterdam, 1995. p. 491
  2. J. P. Schaffer et al., J. Elec. Mat. 18, 737 (1989) https://doi.org/10.1007/BF02657527
  3. B. Mantl and W. Triftshauser, Appl. Phys. 5, 177 (1974) https://doi.org/10.1007/BF00928232
  4. A. P. Druzhkov, R. N. Yeshchenko, S. M. Klotsman, A. N. Martem'Yanov, and G. G. Taluts, Phys. Met. Metall. 66, 117 (1988)
  5. J. L. Lee, J. T. Waber, Meta. Trans. 21a, 2037 (1990)
  6. C. G. Kim and C. Y. Lee, Kor. J. Mater. Res. 12, 359 (2002) https://doi.org/10.3740/MRSK.2002.12.5.359
  7. K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe and M. F. Robbins, Phy. Rev. Lett. 38, 241 (1977) https://doi.org/10.1103/PhysRevLett.38.241
  8. K. G. Lynn, J. E. Dickman, W. L. Brown and M. F. Robbins, Phy. Rev. B 20, 3566 (1978) https://doi.org/10.1103/PhysRevB.20.3566
  9. J. H. Lee and K. J. Kim, J. Kor. Vacuum Soc. 15, 527 (2006)
  10. J. Seo and J. S. Kim, J. Kor. Vacuum Soc. 15, 410 (2006)
  11. S. Ishibashi, A. Yamaguchi, Y. Suzuki, M. Doyama, H. Kumamura, and K. Togano, Jpn. J. Appl. Phys. 26, L688 (1987) https://doi.org/10.1143/JJAP.26.L688
  12. M. Chakrabarti, A. SarKar, D. Sanyal, G. P. Karwasz and A. Zecca, Phys. Lett. A 321, 376 (2004) https://doi.org/10.1016/j.physleta.2003.11.062
  13. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature 410, 63 (2001) https://doi.org/10.1038/35065039
  14. W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley and R. H. Hammond, Appl. Phys. Lett. 80, 3563 (2002) https://doi.org/10.1063/1.1478151
  15. W. K. Seong, J. Y. Huh, S. G. Jung, W. N. Kang, H. S. Lee, E. M. Choi and S. I. Lee, J. Kor. Phys. Soc. 51, 174 (2007) https://doi.org/10.3938/jkps.51.174
  16. M. Fujinami, T. Sawada, and T. Akahane, Rad. Phys. Chem. 68, 631 (2003) https://doi.org/10.1016/S0969-806X(03)00252-4
  17. T. Onitsuka, M. Takenaka, H. Abe, E. Kuramoto, H. Ohkubo, Y. Nagai, and M. Hasegawa, Mater. Sci. Forum 445-446, 168 (2004)
  18. E. C. von Stetten, S. Berko, X. S. Li, R. R. Lee, J. Brynestad, D. Singh, H. Krakauer, W. E. Pickett and R. E. Cohen, Phys. Rev. Lett. 60, 2198 (1988) https://doi.org/10.1103/PhysRevLett.60.2198

Cited by

  1. Investigation of Proton Irradiated Effect on n, p type Silicon by Positron Annihilation Method vol.21, pp.5, 2012, https://doi.org/10.5757/JKVS.2012.21.5.225
  2. Positron annihilation investigation of a Y1Ba2Cu3O7−δ epitaxial thin film vol.67, pp.7, 2015, https://doi.org/10.3938/jkps.67.1232
  3. The Characterization of Nb3Ge by Slow Positron Annihilation Spectroscopy vol.19, pp.6, 2010, https://doi.org/10.5757/JKVS.2010.19.6.489
  4. The Characterization of Proton Irradiated BaSrFBr:Eu Film by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy vol.18, pp.6, 2009, https://doi.org/10.5757/JKVS.2009.18.6.447
  5. Proton Irradiated Cz-Si by the Coincidence Doppler Broadening Positron Annihilation Spectroscopy vol.20, pp.5, 2011, https://doi.org/10.5757/JKVS.2011.20.5.367