Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.6.341

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method  

Lee, Chong Yong (Department of Physics, Hannam University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.6, 2013 , pp. 341-347 More about this Journal
Abstract
The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.
Keywords
Proton irradiation; S-parameter; CDBPAS; n, p type Si; Defect characteristics;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. D. Lee, Y. D. Kim, S. S. Dahiwale, H. Boo, S. Park, S. J. Tark, and D. Kim, J. Korean Vac. Soc. 21, 29 (2012).   DOI   ScienceOn
2 G. P. Willeke, Sol. Energ. Mater. Sol. Cell 72, 191 (2002).   DOI   ScienceOn
3 N. Y. Artyunov, M. Lsayed, R. Rause-Reberg, V. V. Emtsev, G. A. Oganesyan, and V. V. Kozlovski, J. Condes. Matter 25, 035801 (2013).   DOI   ScienceOn
4 A. Uedono, Y. K. Cho, S. Tanigawa, and A. Ikari, Jpn. J. Appl. Phys. 33, 1 (1994).   DOI   ScienceOn
5 S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993).   DOI   ScienceOn
6 C. He, M. Muramatsua, T. Ohdairaa, N. Oshimaa, A. Kinomuraa, R. Suzukia, and Y. Kobayashia, Radiation Phys. and Chem. 76, 204 (2007).   DOI   ScienceOn
7 C. Y. Lee and S. H. Bae, J. Korean Vac. Soc. 19, 489 (2010).   DOI   ScienceOn
8 K. H. Lee and C. Y. Lee, J. Korean Vac. Soc. 20, 367 (2011).   DOI   ScienceOn
9 H. E. Schaefer, R. Wurschum, R. Birringer, and H. Gleiter, Phy. Rev. B 38, 9545 (1988).   DOI   ScienceOn
10 K. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).
11 Z. Jin, G. Niu, J. D. Cressler, C. J. Marshall, P. W. Marshall, H. S. Kim, R. A. Reed, and D. L. Harame, IEEE Transactions on Nuclear Science, 48, 2244 (2001).   DOI   ScienceOn
12 R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors, (Springer, Heidelberg, 1999).
13 L. S. Vlasenko, M. P. Vlasenko, V. A. Kozlov, V. V. Kozlovskii, Semiconductors 33, 1059 (1999).   DOI
14 J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Kor. J. Mater. Res. 18, 427 (2008).   DOI   ScienceOn
15 J. J. Kelly and R. M. Lambrecht, Phys. Lett. A 60, 475 (1977).   DOI   ScienceOn
16 F. Hori, T. Chijiiwa, R. Oshima, and T. Hisamatsu, Physica B 273, 480 (1999).
17 N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, Phys. Rev. B 35, 4166 (1987).   DOI   ScienceOn
18 T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).
19 S. Fatima, B. G. Svensson, and C. Jagadish, Conference on Optoelectronic and Micro-electronic Materials And Devices Proceedings, 154 (1996).
20 R. Poirier, V. Avalos, S. Dannefaer, F. Schiettekatte, and S. Roorda, Nuclear Instr. Meth. Bin Phys. Res. 206, 85 (2003).   DOI   ScienceOn
21 S. Vayrynen, Irradiation of Silicon Particle Detectors with MeV - Protons, (University of Helsinki, Helsinki, 2010).