Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.6.489

The Characterization of Nb3Ge by Slow Positron Annihilation Spectroscopy  

Lee, C.Y. (Department of Physics, Hannam University)
Bae, S.H. (Department of Radiological Science, Konyang University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.6, 2010 , pp. 489-494 More about this Journal
Abstract
Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $Nb_3Ge$ superconductor film, which were performed from 20 K to 300 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values between 0.598 and 0.594 were decreased while the temperature were decreasing, that indicated the voids into the samples. The temperature dependence came from specific positron trapping rate into the vacancy-type defects. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the Nb3Ge superconductor.
Keywords
$Nb_3Ge$; Superconductivity S-parameter; Slow positron; Positron annihilation; Phase Transition;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Ishibashi, A. Yamaguchi, Y. Suzuki, M. Doyama, H. Kumamura, and K. Togano, Jpn. J. Appl. Phys. 26, L688 (1987).   DOI
2 M. Chakrabarti, A. SarKar, D. Sanyal, G. P. Karwasz, and A. Zecca, Phys. Lett. A 321, 376 (2004).   DOI
3 N. N. Mikhailov, I. V. Voronova, O. A. Lavrova, E. V. Melnikov, and M. N. Smirnova, JETP Lett. 19, 271 (1974).
4 N. L. Saini, M. Filippi, H. Oyanagi, H. Ihara, A. Iyo, and A. Bianconi, Phys. Rev. B 68, 104507 (2003).   DOI
5 M. Fujinami, T. Sawada, and T. Akahane, Rad. Phys. Chem. 68, 631 (2003).   DOI
6 T. Onitsuka, M. Takenaka, H. Abe, E. Kuramoto, H. Ohkubo, Y. Nagai, and M. Hasegawa, Mater. Sci. Forum 445-446, 168 (2004).   DOI
7 J. H. Kim, Y. S. Lee, E. S. Chung, C. Y. Lee, and G. H. Lee, Phys. & High Tech. 11(3), 41 (2002).
8 E. C. von Stetten, S. Berko, X. S. Li, R. R. Lee, J. Brynestad, D. Singh, H. Krakauer, W. E. Pickett and R. E. Cohen, Phys. Rev. Lett. 60, 2198 (1988).   DOI
9 N. L. Saini,, A. Bianconi, and H. Oyanagi, J. Phys. Soc. Jpn. 70, 2092 (2001).   DOI
10 R. M. Nieminen, J. Laakkonen, P. Hautojarvi, and A. Vehanen, Phys. Rev. B 19, 1397 (1979).   DOI
11 P. Hautojarvi and C. Corbel, in: A. Dupasquier, A. P. Mills Jr. (Eds.), Positron Spectroscopy of Solids, IOS Press, Ohmsha, Amsterdam, 1995. p. 491.
12 J. P. Schaffer, A. Rohatgi, A. B. DeWarld, R. L. Frost, and S. K. Pang, J. Elec. Mat. 18, 737 (1989).   DOI
13 B. Mantl and W. Triftshauser, Appl. Phys. 5, 177 (1974).   DOI
14 A. P. Druzhkov, R. N. Yeshchenko, S. M. Klotsman, A. N. Martem'Yanov, and G. G. Taluts, Phys. Met. Metall. 66, 117 (1988).
15 J. L. Lee and J. T. Waber, Meta. Trans. 21a, 2037 (1990).
16 J. G. Shin, C. Y. Lee, S. H. Bae, J. H. Kim, and J. H. Kwon, Kor. J. Mater. Res. 18, 427 (2008).   과학기술학회마을   DOI
17 C. Y. Lee, W. N. Kang, Y. Nagai, K. Inoue, and M. Hasegawa, J. Kor. Vacuum Soc. 17, 160 (2008).   과학기술학회마을   DOI
18 J. H. Kim, Y. Nagai, and C. Y. Lee, J. Kor. Vacuum Soc. 18, 447 (2009).   과학기술학회마을   DOI
19 K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, and M. F. Robbins, Phy. Rev. Lett. 38, 241 (1977).   DOI
20 K. G. Lynn, J. E. Dickman, W. L. Brown, and M. F. Robbins, Phy. Rev. B 20, 3566 (1978).