• 제목/요약/키워드: 논리 대수

검색결과 73건 처리시간 0.022초

준구조 퍼지 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-style semantics for substructural fuzzy logics)

  • 양은석
    • 논리연구
    • /
    • 제19권2호
    • /
    • pp.295-322
    • /
    • 2016
  • 이 글에서 우리는 유니놈에 기반한 퍼지 논리를 위한 대수적 크립키형 의미론을 다룬다. 이를 위하여 먼저 유니놈에 기반한 논리체계들을 위한 대수적 의미론을 재고한다. 다음으로 유니놈에 기반한 체계들의 일반적 구조에서 다양한 종류의 일반적 대수적 크립키형 의미론을 소개하고 그것들을 대수적 의미론과 연관 짓는다. 마지막으로 우리는 유사하게 특수한 대수적 의미론을 소개하고 이를 또한 대수적 의미론과 연관 짓는다.

  • PDF

약한 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-Style Semantics for Weakly Associative Fuzzy Logics)

  • 양은석
    • 논리연구
    • /
    • 제21권2호
    • /
    • pp.155-174
    • /
    • 2018
  • 이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 의미론을 연구한다. 이를 위하여 먼저 약한 결합 원리를 갖는 퍼지 논리의 대수적 의미론을 소개한다. 다음으로 이 체계들을 위한 대수적 크립키형 의미론을 제공한 후, 이를 대수적 의미론과 연관 짓는다.

3치 초일관 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-style Semantics for Three-valued Paraconsistent Logic)

  • 양은석
    • 논리연구
    • /
    • 제17권3호
    • /
    • pp.441-461
    • /
    • 2014
  • 이 글에서 우리는 3치 초일관 논리를 위한 한 종류의 크립키형 의미론 즉 대수적 크립키형 의미론을 다룬다. 이를 위하여 먼저 두 3치 체계를 소개하고 그에 상응하는 대수를 정의한 후 이 두 체계가 대수적으로 완전하다는 것을 보인다. 다음으로 이 체계들을 위한 대수적 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관짓는다.

  • PDF

퍼지 논리 MTL을 위한 대수적 루트리-마이어형 의미론 (Algebraic Routley-Meyer-style semantics for the fuzzy logic MTL)

  • 양은석
    • 논리연구
    • /
    • 제21권3호
    • /
    • pp.353-371
    • /
    • 2018
  • 이 글에서 우리는 대수적 루트리-마이어형 의미론이라고 불릴 의미론을 연구한다. 이를 위하여 먼저 퍼지 논리 체계 MTL과 대수적 의미론을 소개한다. 다음으로 이 체계를 위한 대수적 루트리-마이어형 의미론을 제공한 후, 이를 대수적 의미론과 연관 짓는다.

약화없는 퍼지 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-style semantics for weakening-free fuzzy logics)

  • 양은석
    • 논리연구
    • /
    • 제17권1호
    • /
    • pp.181-196
    • /
    • 2014
  • 이 글에서 우리는 퍼지 논리들을 위한 크립키형 의미론을 다룬다. 보다 정확히 유니놈에 기반한 퍼지 논리 UL의 몇몇 약화없는 확장을 위한 대수적 크립키형 의미론을 소개한다. 이를 위하여 먼저 UL의 약화없는 확장 채계들을 소개하고 그에 상응하는 대수들을 정의한 후 이 체계들이 대수적으로 완전하다는 것을 보인다. 다음으로 이러한 체계들을 위한 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다.

  • PDF

격자함의 대수와 헤이팅 대수 (Lattice Implication Algebras and Heyting Algebras)

  • 연용호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.381-382
    • /
    • 2018
  • 격자함의 대수와 헤이팅 대수는 부울 대수를 일반화한 논리체계이며 논리적 함의(${\rightarrow}$)를 이항연사자로 갖는 대수적 체계를 갖는다. 본 논문에서는 격자함의 대수와 헤이팅 대수가 서로 다른 대수체계를 갖는다는 것을 예로 보이고, 이들의 차이점을 조사한다. 또한 격자함의 대수, 헤이팅 대수, 그리고 부울 대수의 관계를 알아본다.

  • PDF

R, fuzzy R, and Algebraic Kripke-style Semantics

  • 양은석
    • 논리연구
    • /
    • 제15권2호
    • /
    • pp.207-222
    • /
    • 2012
  • 이 글에서 우리는 연관 논리 R을 퍼지화한 체계 FR을 위한 크립키형 의미론을 다룬다. 이를 위하여 먼저 FR 체계를 소개하고 그에 상응하는 FR-대수를 정의한 후 FR이 대수적으로 완전하다는 것을 보인다. 다음으로 FR을 위한 대수적 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다. 마지막으로 이러한 의미론이 R에는 적용될 수 없다는 점을 보인다.

  • PDF

19세기 대수학 및 논리학 발달에서의 드모르간의 위상 (De Morgan in the development of algebra and mathematical logic in 19C)

  • 최지선;박선용;김재홍;권석일;박교식
    • 한국수학사학회지
    • /
    • 제22권4호
    • /
    • pp.129-144
    • /
    • 2009
  • 이 연구의 목적은 19세기 대수와 논리 분야에서 드모르간이 구체적으로 어떻게 기여했는지를 살펴보는 것이다. 19세기 대수 분야 발달과정에서 드모르간은, 산술에서 단순히 유추한 형태의 기호대수를 넘어서, 형식으로부터 구성하는 수학의 가능성을 인식하고 이를 명시적으로 나타내어 추상대수학으로 나아갈 수 있는 기초를 닦았다. 드모르간은 19세기 논리학 분야 발달과정에서 아리스토텔레스 논리학의 재구성자인 동시에 수학적 논리학의 창시자로 간주할 수 있다. 그의 연구로 논리학이 철학에서 분리되어 나와 수학과 더욱 긴밀하게 결합하게 되어 수학적 논리학이 하나의 독립적 학문으로 자리 잡게 되었다. 그의 연구 활동을 통하여 우리는 19세기 수학의 발달에서 대수학과 논리학이 현재의 상태로 진화하여 가는 모습을 좀 더 명확하게 알 수 있다.

  • PDF

논리-대수 구조에 관한 연구 - 격자 구조의 논리 철학적 함의에 관하여 -

  • 양은석
    • 논리연구
    • /
    • 제2권
    • /
    • pp.119-150
    • /
    • 1998
  • 이 글의 기본적인 목적은 논리 체계의 근간이 되는 구조의 중요성을 부각시키는데 있다. 이를 위하여 여기서는 그러한 구조 논의가 격자를 통해 마련될 수 있다는 점을 논리, 철학적으로 예증하였다. 구체적으로 첫째로 그간 이질적인 체계로 간주되어 온 명제를 대상으로 한 고전 논리와 직관주의 논리, 다치 논리가 모두 격지 구조를 갖는다는 것을 형식적으로 증명하였다. 둘째로 격자 구조가 갖는 철학적 함의를 멱등법칙을 중심으로 검토하였다.

  • PDF

CnHpsUL*을 위한 대수적 크립키형 의미론 (Algebraic Kripke-style semantics for an extension of HpsUL, CnHpsUL*)

  • 양은석
    • 논리연구
    • /
    • 제19권1호
    • /
    • pp.107-126
    • /
    • 2016
  • 이 글에서 우리는 약화 없는 비교환적인 퍼지 논리의 크립키형 의미론을 다룬다. 이의 한 예로, 우리는 가-유니놈에 기반한 퍼지 논리 HpsUL의 한 확장 체계인 $CnHpsUL^*$을 위한 대수적 크립키형 의미론을 고려한다. 이를 위하여 먼저 $CnHpsUL^*$ 체계를 소개하고 그에 상응하는 $CnHpsUL^*$-대수를 정의한 후 $CnHpsUL^*$이 대수적으로 완전하다는 것을 보인다. 다음으로 $CnHpsUL^*$을 위한 크립키형 의미론을 소개하고 이를 대수적 의미론과 연관 짓는다.

  • PDF