• Title/Summary/Keyword: 나노기포

Search Result 27, Processing Time 0.034 seconds

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Effect of Nano Bubble Oxygen and Hydrogen Water on Microalgae (나노기포 산소수 및 수소수가 미세조류 배양에 미치는 영향)

  • Choi, Soo-Jeong;Kim, Young-Hwa;Jung, In-Ha;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.324-329
    • /
    • 2014
  • Microalgae Nannochloropsis oculata (N. oculta) and Chlorella vulgaris (C. vulgaris) are important sources for biodisel because of the high content of neutral lipids. Stable nano bubble is maintained for a long time and therefore it is possible for use in biotechnology. In this study, effects of nano bubble oxygen or hydrogen water on the microalgae growth were characterized. The cell growth in nano bubble water was similar to that of control, and the total lipid content was rather low. But, chlorophyll content of N. oculata grown in nanno bubble oxygen and hydrogen water increased 54% and 30%, and increased 59%, 39% in C. vulgaris. Carotenoid content also increased 21%, 25% in N. oculata and 49%, 29% in C. vulgaris grown in nano bubble oxygen and hydrogen water. From these results, nano bubble water seems to enhance the photosynthetic capacity of microalgae.

The Technical Development of Scouring/Dyeing using Nanobubble (나노 버블을 이용한 정련/염색 기술 개발)

  • Lee, Chang-Seok;Ryu, Sun-A;Kwon, Young-Mi;Jo, Jang-Hoon;Ann, Sang-Uk
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.33-33
    • /
    • 2012
  • 소비자의 기호에 따른 섬유 제품은 고급스러운 감촉 및 착용감, 신축성 등 기능성 측면이 증대되어 의류 및 인테리어용에 니트 제품 및 세데니아 원단의 수요가 급증하고 있다. 그러나 니트 제품은 조직이 복잡하며 장력에 의해 형태 변화가 심해 제품 개발에 대한 문제점이 발생하고 세데니아 원단 또한 장력에 매우 민감하다. 특히 정련/염색시 고부가가치 제품의 품질문제에 영향을 미치며, 제품손상과 불량률이 문제점으로 대두되고 있다. 나노버블은 기포의 크기가 작고 에너지를 보유하고 있기 때문에 생지에 부착되어있는 호제들과 쉽게 결합할 뿐 아니라 생지로부터 쉽게 분리시킴으로써 정련성을 높이는 역할을 수행하게 된다. 정련제와 결합된 나노버블은 정련시 물에 잘 용해되지 않는 스판오일, 방사유제등을 잘 흡착하여 분리시키기 때문에 정련효과를 병행해서 얻을 수 있다. 즉 정련효과가 현저하게 향상됨으로써 정련제의 양도 기존의 정련 방식에 비하여 적게 사용하여도 동일한 정련효과를 얻을 수 있었다. 발생기포의 양을 조절할 수 있어 소포제 없이도 기포발생에 의한 현장사고를 방지함으로써 고품질의 정련제품을 얻을 수 있었다. 또한 기존 정련기술에 비해 정련시간 단축으로 인한 에너지 절감효과 및 이산화탄소 배출량 감소, 나노사이즈의 버블의 높은 분산력으로 과량의 수세공정 생략 등 친환경적 정련/염색 공정이 가능하다.

  • PDF

Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Propyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 프로필트리메톡시실란에 의해 표면 개질된 CaCO3 나노입자가 에멀젼과 기포 안정성에 미치는 영향에 관한 연구)

  • Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • In this study, surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane (PTMS) was conducted and the effect of surface hydrophobicity on the stability of foam and emulsion was studied in order to test the potential applicability as a foam stabilizer or an emulsifier. The surface modification of CaCO3 nanoparticles by PTMS was confirmed by FT-IR, DSC and TGA analysis. The atomic concentration of CaCO3 particle surface treated by PTMS has been also identified by using XRD and XPS analyses. Both floating tests and contact angle measurements were also performed to examine the effect of PTMS concentration on the surface modification of CaCO3 nanoparticles.

Study of Attenuation and Dispersion of Ultrasound in Bubbly Liquids (기포운 내 초음파의 감쇠 및 분산에 관한 연구)

  • Choi, Young-Soo;Ohm, Won-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.251-257
    • /
    • 2010
  • This paper deals with the attenuation and dispersion of ultrasound in bubbly liquids. Bubble clouds in liquid are formed by a variety of mechanisms, leading to different bubble sizes and spectra. Our aim is to investigate how bubble sizes and spectra affect the attenuation and dispersion characteristics of bubbly liquids. Especially, we highlight the attenuation and dispersion behaviors of nano-bubbles, which have not been reported elsewhere. Computations show that the attenuation and dispersion characteristics of bubbly liquids depend heavily on the quality factors of constituent bubbles. The present study is expected to facilitate in-depth understanding of sound propagation in bubbly liquids.

Characterization of Arthrospira platensis Cultured in Nano-bubble Hydrogen Water (나노기포 수소수에서 배양한 Arthrospira platensis 특성 확인)

  • Seo, Ji-Hye;Choi, Soo-Jeong;Lee, Sang-Hoon;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2015
  • Arthrospira platensis (A. platensis) has been used in various fields including dietary supplements as it contains a high protein content and large amounts of unsaturated fatty acids. In addition, it has some pigments such as phycocyanin, myxoxanthophyll and zeaxanthin and thus has been used as a food additive and antioxidant substance. Nano-bubble hydrogen is to dissolve more than the saturation solubility in water by injecting the hydrogen gas in the nano-bubble hydrogen water. The nano-bubbles are known to possess higher antioxidant properties in addition to anticancer effects. In this paper, Arthrospira platensis was cultured in both a normal medium with distilled water and nano-bubble hydrogen water medium and their properties were compared. The cell growth and the content of chlorophyll and carotenoid in the nano-bubble hydrogen water was 15% higher than that of the control. The level of phycocyanin in nano-bubble hydrogen water was also 7% higher than that of the control. However, there were little differences in the lipid content between the nano-bubble and control. To determine the content of the antioxidants, the level of flavonoid and polyphenol were measured. The level of flavonoid in nano-bubble hydrogen water was found to be more than 70% increased when comparing to that of the control, while the level of polyphenol was similar to each other.

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향)

  • Lim, Jong Choo;Park, Ki Ho;Lee, Jeong Min;Shin, Hee Dong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.386-393
    • /
    • 2022
  • In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

Design of an Ammonia/water Bubble Absorber with Binary Nanofluids (이성분 나노유체를 이용한 암모니아/물 기포 흡수기 설계)

  • Kim Jin-Kyeong;Kim Sung-Soo;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.556-562
    • /
    • 2006
  • The objectives of this paper are to analyze simultaneous heat and mass transfer performance for a plate type bubble absorber with binary nanofluids numerically and to investigate the effects of binary nanofluids and surfactants on the size of the bubble absorber. The effective absorption ratio represents the effect of binary nanofluids and surfactants on the absorption performance. The kinds and concentrations of nano-particles and surfactants are considered as the key parameters. The results show that the addition of surfactants can reduce the size of absorber up to 74.4%, the application of binary nanofluids does the size up to 63.6%. Combination of binary nanofluids and surfactants can reduce the size of absorber up to 77.4%.

A Study on the Removal of Heavy Metals from Groundwater Using Permeable Reactive Barriers Based on Nano FeS (나노 FeS를 이용한 투과성반응벽체의 중금속 오염 지하수 처리에 관한 연구)

  • Jung, Gwan-Ju;Choi, Sang-Il;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.19-28
    • /
    • 2009
  • The acid mine drainage (AMD) and landfill leachates released into the subsurface environment can result in serious environmental problems like soil and groundwater contamination. The AMD and the leachates of landfill were known to contain many heavy metals. In this study, the author assessed the reactivity and ability of the FeS coated-ALC for the removal of contaminants (As, Cd, Cu, Pb, Ni, Zn, Al) in AMD and leachates in landfill. The synthetic nano-FeS and Autoclaved Lightweight Concrete (ALC) were used as reactive materials in the permeable reactive barriers(PRBs). The result of batch test indicated that synthetic nano-FeS can remove 99% of heavy metals for the 1hr of reaction time except for As and Ni(about 90%). However, the 80% of As and Ni was removed in column 1(FeS coated-ALC). The column 2(Ore FeS) removed more than 99% of heavy metals. The pH of the column 1 was increased from 3.51 to 6.39~6.50, and the pH with column 2 was increased from 3.51 to 9.20. As the result of this study, the author can surmise that the synthetic nano-FeS coated ALC will use as a very good reactive material of the PRBs to treat the contaminated groundwater with AMD and leachate of landfill.

Numerical Analysis of Effects of Mold Cavity Shape on Bubble Defect Formation in UV NIL (UV NIL공정에서 몰드 중공부 형상과 기포결함에 대한 수치해석)

  • Lee, Hosung;Kim, Bo Seon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.596-602
    • /
    • 2018
  • Nanoimprint lithography (NIL) is an emerging technology that enables cost-effective and high-throughput nanofabrication. In ultraviolet (UV) NIL, low-cost and high-speed production can be achieved using a non-vacuum environment at room temperature and low pressure. However, there are problems with the formation of bubble defects in such an environment. This paper investigates the shape of the mold cavity and the bubble defect formation in UV NIL in a non-vacuum environment. The bubble defect formation was simulated using two-dimensional flow analysis and the VOF method for commonly used cavity mold shapes (rectangular, elliptical, and triangular). The characteristics of the resist flow front and various contact angles were also analyzed. The shape of the mold cavity had a very significant effect on the bubble defect formation. For all cavity shapes, a smaller contact angle with the mold and larger contact angle with the substrate decreased the possibility of bubble defect formation. The elliptical shape was the most effective for preventing bubble defect formation.