Browse > Article
http://dx.doi.org/10.14478/ace.2014.1038

Effect of Nano Bubble Oxygen and Hydrogen Water on Microalgae  

Choi, Soo-Jeong (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Kim, Young-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Jung, In-Ha (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
Publication Information
Applied Chemistry for Engineering / v.25, no.3, 2014 , pp. 324-329 More about this Journal
Abstract
Microalgae Nannochloropsis oculata (N. oculta) and Chlorella vulgaris (C. vulgaris) are important sources for biodisel because of the high content of neutral lipids. Stable nano bubble is maintained for a long time and therefore it is possible for use in biotechnology. In this study, effects of nano bubble oxygen or hydrogen water on the microalgae growth were characterized. The cell growth in nano bubble water was similar to that of control, and the total lipid content was rather low. But, chlorophyll content of N. oculata grown in nanno bubble oxygen and hydrogen water increased 54% and 30%, and increased 59%, 39% in C. vulgaris. Carotenoid content also increased 21%, 25% in N. oculata and 49%, 29% in C. vulgaris grown in nano bubble oxygen and hydrogen water. From these results, nano bubble water seems to enhance the photosynthetic capacity of microalgae.
Keywords
Nannochloropsis oculata; Chlorella vulgaris; nano bubble; chlorophyll; carotenoid;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 A. Widjaja, C.-C. Chien, and Y.-H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. TICE, 40, 13-20 (2009).
2 A. Converti, A. A. casazza, E. Y. Ortiz, P. Perego, and M. D. Borghi, Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, CEP, 48, 1146-1151 (2009).
3 J.-H. Kim, H.-J. Park, Y.-H. Kim, H. Joo, S.-H. Lee, and J.-H. Lee, UV-induced mutagenesis of Nannochloropsis oculata for the increase of lipid accumulation and its characterization, Appl. Chem. Eng., 24(2), 155-160 (2013).
4 H.-J. Park, Y.-H. Kim, and J.-H. Lee, Effect of alginate on the growth of Nannochloropsis oculata NIED-2145, KSBB. J. 26(3), 206-210 (2011).   과학기술학회마을   DOI   ScienceOn
5 Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol. 99, 4717-4722 (2008).   DOI   ScienceOn
6 S. P. Loh and S. P. Lee, The effect of extraction methods on fatty acid and carotenoid compositions of marine microalgae Nannochloropsis oculata and Chaetocerros gracilis, Pertanika J. Trop. Agric. Sci., 36(2), 145-160 (2013).
7 L. Zhang, Y. Zhang, X. Zhang, Z. Li, G. Shen, M. Ye, C. Fan, H. Fang, and J. Hu, Electrochemically controlled formation and growth of hydrogen nannobubbles, Langmuir, 22, 8109-8113 (2006).   DOI   ScienceOn
8 K. Tanaka and M. Matsumoto, Nano bubble-size dependence of surface tension and inside pressure, Fluid Dynamics Research, 40(7-8), 546-553 (2008).   DOI
9 M. Usei, 마이크로 버블의 호기성 여상법에 의한 하수고도처리, 첨단 환경기술, 18-24 (2007).
10 K. Ying, D. J. Gilmour, Y. Shi, and W. B. Zimmerman, Growth enhancement of Dunaliella salina by microbubble induced airlift loop bioreactor (ALB)-the relation between mass transfer and growth rate, JBNB, 4, 1-9 (2013).
11 E. Bertozzini, L. Galluzzi, A. Penna, and M. magnani, Application of the standard addition method for the absolute quantification of newtral lipids in microalge using Nile red, J. Microbiol. Methods., 87, 17 (2011).   DOI   ScienceOn
12 R. P. L. Guilard and J. H. Ryther, Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran, Can. J. Microbiol., 8, 229-239 (1962).   DOI   ScienceOn
13 H.-J. Park, Y.-H. Kim, and J.-H. Lee, Characterization of Arthrospira platensis mutants generated by UV-B irradiation, Appl. Chem. Eng., 23, 496 (2012).
14 W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae, Bioresour. Technol., 102, 135 (2011).   DOI   ScienceOn
15 S.-J. Choi, Y.-H. Kim, A. Kim, and J.-H. Lee, Arthrospira platensis mutants containing high lipid content by electron beam irradiations and analysis of its fatty acid composition, Appl. Chem. Eng., 24(6), 628-632 (2013).   DOI
16 J. H. Yoon, J.-H. Shin, and T. H. Park, Characterization of factors influencing the growth of Anabaena variabilis in a bubble column reactor, Bioresour. Technol., 99, 1204-1210 (2008).   DOI
17 C.-G. Lee and B. O. Palsson, High-density algal photobioreators using light-emitting diodes, Biotechnol. Bioeng. 44, 1161-1167 (1994).   DOI   ScienceOn
18 E. Han, J. Huang, Y. Li, W. Wang, M. Wan, G. Shen, and J. Wang, Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by $CO_2$, Bioresour. Technol., 136, 418-424 (2013).   DOI
19 S. H. Oh, J. G. Han, N. Y. Kim, J. S. Cho, T. B. Yim, S. Y. Lee, and H. Y. Lee, Cell Growth and Lipid Production from Fed-batch Cultivation of Chlorella minutissima according to Culture Conditions, KSBB. J. 24(4), 377 (2009).   과학기술학회마을
20 S.-Y. Chiu, C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, and C.-S. Lin, Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration, Bioresour. Technol., 100, 833-838 (2009).   DOI   ScienceOn
21 L. Koyuncu and H. Afsar, Decomposition of dyes in textile wastewater with ozone, J. Environ. Sci. Health, 31, 1035-1041 (1996).
22 M. Takahashi, K. Chiba, and P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, J. Phys. Chem., 111, 1343-1347 (2007).   DOI   ScienceOn
23 M. Takahashi, Potential of microbubbles in aqueous solutions : electrical properties of the gas-water interface, J. Phy. Chem., 109, 21858-21864 (2005).   DOI   ScienceOn
24 R. Ranjbar, R. Inoue, H. Shiraishi, T. Katsuda, and S. Katoh, High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor, Biochem. Eng. J., 39, 575-580 (2008).   DOI
25 S. Raso, B. V. Genugten, M. Vermue, and R. H. Wijffels, Effect of oxygen concentration on the growth of Nannochloropsis sp. at low light intensity, J. Appl. Phycol., 24(4), 863-871 (2012).   DOI
26 J. E. Amstrong and J. A. Calder, Inhibition of light-induced pH and increase and $O_2$ evolution of marine microalgae by water-soluble components of crude and refined oils, Appl. Environ. Microbiol., 35(5), 858-862 (1978).
27 W. B. Zimmerman, M. Zandi, H. C. H. Bandulasena, V. Tesar, D. J. Gilmour, and K. Ying, Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina, Appl. Energ., 88, 3357-3369 (2011).   DOI
28 H.-J. Park, E.-J. Jin, T. M. Jung, H. Joo, and J.-H. Lee, Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata, Appl. Chem. Eng., 21(6), 659-663 (2010).