DOI QR코드

DOI QR Code

Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Propyltrimethoxysilane on the Stability of Emulsion and Foam

실란 커플링제 프로필트리메톡시실란에 의해 표면 개질된 CaCO3 나노입자가 에멀젼과 기포 안정성에 미치는 영향에 관한 연구

  • Lee, YeJin (Department of Chemical and Biochemical Engineering, Dongguk university) ;
  • Park, KiHo (Department of Chemical and Biochemical Engineering, Dongguk university) ;
  • Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk university)
  • 이예진 (동국대학교 화공생물공학과) ;
  • 박기호 (동국대학교 화공생물공학과) ;
  • 임종주 (동국대학교 화공생물공학과)
  • Received : 2019.12.10
  • Accepted : 2020.01.05
  • Published : 2020.02.10

Abstract

In this study, surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane (PTMS) was conducted and the effect of surface hydrophobicity on the stability of foam and emulsion was studied in order to test the potential applicability as a foam stabilizer or an emulsifier. The surface modification of CaCO3 nanoparticles by PTMS was confirmed by FT-IR, DSC and TGA analysis. The atomic concentration of CaCO3 particle surface treated by PTMS has been also identified by using XRD and XPS analyses. Both floating tests and contact angle measurements were also performed to examine the effect of PTMS concentration on the surface modification of CaCO3 nanoparticles.

본 연구에서는 실란 커플링제 프로필트리메톡시실란(propyltrimethoxysilane, PTMS)을 사용하여 CaCO3 나노입자의 표면을 개질하였으며, 개질된 CaCO3 나노입자를 에멀젼 유화제 및 기포 안정화제로의 적용 가능성을 시험하고자 나노입자 표면의 소수성 변화가 기포와 에멀젼의 안정성에 미치는 영향에 관하여 살펴보았다. PTMS에 의한 CaCO3 나노입자의 표면 개질은 FT-IR, TGA, DSC 분석을 통하여 확인하였으며, XRD 및 XPS 분석을 통하여 나노입자 표면의 원소 분석을 실행하였다. 또한 부상 시험과 접촉각 측정을 통하여 PTMS 농도가 CaCO3 나노입자의 표면 개질에 미치는 영향에 관하여 살펴보았다.

Keywords

References

  1. Z. G. Cui, Y. Z Cui, C. F Cui, Z. Chen, and B. P. Binks, Aqueous foams stabilized by in situ surface activation of $CaCO_3$ nano particles via adsorption of anionic surfactant, Langmuir, 26, 12567-12574 (2010). https://doi.org/10.1021/la1016559
  2. K. Premphet and P. Horanont, Phase structure of ternary polypropylene/elastomer/filler composites: Effect of elastomer polarity, Polymer, 41, 9283-9290 (2000). https://doi.org/10.1016/S0032-3861(00)00303-7
  3. C. Wang, Y. Sheng, H. Bala, X. Zhao, J. Zhao, X. Ma, and Z. Wang, A novel aqueous-phase route to synthesize hydrophobic $CaCO_3$ particles in situ, Mater. Sci. Eng. C, 27, 42-45 (2007). https://doi.org/10.1016/j.msec.2006.01.003
  4. M. A. Osman and U. W. Suter, Surface treatment of calcite with fatty acids: Structure and properties of the organic monolayer, Chem. Mater., 14, 4408-4415 (2002). https://doi.org/10.1021/cm021222u
  5. S. Mihajlovic, A. Dakovic, Z. Sekulic, V. Jovanovic, and D. Vucinic, Influence of the modification method on the surface adsorption of stearic acid by natural calcite, J. Serb. Chem. Soc., 67, 1-19 (2009). https://doi.org/10.2298/JSC0201001C
  6. Z. Demjen, B. Pukanszky, and J. Nagy, Possible coupling reactions of functional silanes and polypropylene, Polymer, 40, 1763-1773 (1999). https://doi.org/10.1016/S0032-3861(98)00396-6
  7. E. Fekete and B. Pukanszky, Surface coverage and its determination: Role of acid-base interactions in the surface treatment of mineral fillers, J. Colloid Interface Sci., 194, 269-275 (1997). https://doi.org/10.1006/jcis.1997.5118
  8. G. S. Deshmukh, S. U. Pathak, D. R. Peshwe and J. D. Ekhe, Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites, Bull. Mater. Sci., 33, 277-284 (2010). https://doi.org/10.1007/s12034-010-0043-7
  9. Y. Yin and X. Wang, Wet surface modification of light calcium carbonate powder by aluminate coupling agent, Adv. Mater. Res., 79-82, 1967-1970 (2009). https://doi.org/10.4028/www.scientific.net/AMR.79-82.1967
  10. J. Liao, G. Du, X. Qiao, and D. Hao, Surface modification of diatomite by stearic acid and its effects on reinforcing for natural rubber/styrene butadiene rubber blend, J. Chin. Ceram. Soc., 39, 641-645 (2011).
  11. K. Esumi and M. Ueno, Structure-performance Relationships in Surfactant, Marcel Dekker, New York (1997).
  12. I. Grosse and K. Estel, Thin surfactant layers at the solid interface, Colloid Polym. Sci., 278, 1000-1006 (2000). https://doi.org/10.1007/s003960000364
  13. F. Tiberg, J. Brinck, and L. Grant, Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface, Curr. Opin. Colloid Interface Sci., 4, 411-419 (1999). https://doi.org/10.1016/S1359-0294(00)00016-9
  14. P. Somasundaran and L. Huang, Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces, Adv. Colloid Interface Sci., 88, 179-208 (2000). https://doi.org/10.1016/S0001-8686(00)00044-0
  15. E. M. Song, D. W. Kim, B. J. Kim, and J. C. Lim, Surface modification of $CaCO_3$ nanoparticles by alkylbenzene sulfonic acid surfactant, Colloids Surf. A, 461, 1-10 (2014). https://doi.org/10.1016/j.colsurfa.2014.07.020
  16. E. M. Song, D. W. Kim, and J. C. Lim, Effect of adsorption of laureth sulfonic acid type anionic surfactant on the wetting property of $CaCO_3$ substrate, J. Ind. Eng. Chem., 28, 351-358 (2015). https://doi.org/10.1016/j.jiec.2015.03.015
  17. D. W. Kim, J. Y. Lee, S. M. Lee, and J. C. Lim, Surface modification of calcium carbonate nanoparticles by fluorosurfactant, Colloids Surf. A, 536, 213-223 (2018). https://doi.org/10.1016/j.colsurfa.2017.05.002
  18. J. Y. Lee, S. H. Jo, and J. C. Lim, Effect of surface modification of $CaCO_3$ nanoparticles by a silane coupling agent methyltrimethoxysilane on the stability of foam and emulsion, J. Ind. Eng. Chem., 74, 63-70 (2019). https://doi.org/10.1016/j.jiec.2019.02.002
  19. Z. Y. Yang, Y. J. Tang, and J. H. Zhang, Surface modification of $CaCO_3$ nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex,, Chalcogenide Lett., 10, 131-141 (2013).
  20. N. Shimpi, A. Mali, D. P. Hansora, and S. Mishra, Synthesis and surface modification of calcium carbonate nanoparticles using ultrasound cavitation technique, Nanosci. Nanoeng., 3, 8-12 (2015). https://doi.org/10.13189/nn.2015.030102
  21. S. Mishra, A. Chatterjee, and R. Singh, Novel synthesis of nanocalcium carbonate ($CaCO_3$)/polystyrene(PS) core-shell nanoparticles by atomized microemulsion technique and its effect on properties of polypropylene(PP) composites, Polym. Adv. Technol., 22, 2571-2582 (2011). https://doi.org/10.1002/pat.1802
  22. E. Mavropoulos, A. M. Costa, L. T. Costa, C. A. Achete, A. M., J. M. Granjeiro, and A. M. Rossi, Adsorption and bioactivity studies of albumin onto hydroxyapatite surface, Colloids Surf. B, 83, 1-9 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.025
  23. S. Ghosh, S. K. Goswami, and L. J. Mathias, Surface modification of nano-silica with amides and imides for use in polyester nanocomposites, J. Mater. Chem. A, 1, 6073-6080 (2013). https://doi.org/10.1039/c3ta10381a
  24. S. Ek, A. Root, M. Peussa, and L. Niinisto, Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results, Thermochim. Acta, 379, 201-212 (2001). https://doi.org/10.1016/S0040-6031(01)00618-9
  25. B. P. Binks and S. O. Lumsdon, Influence of particle wettability on the type and stability of surfactant-free emulsions, Langmuir, 16, 8622-8631 (2000). https://doi.org/10.1021/la000189s
  26. B. P. Binks and J. A. Rodrigues, Double inversion of emulsions by using nanoparticles and a di-chain surfactant, Angew. Chem. Int. Ed., 46, 5389-5392 (2007). https://doi.org/10.1002/anie.200700880
  27. D. E. Tambe and M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions: I. An experimental investigation, J. Colloid Interface Sci., 157, 244-253 (1993). https://doi.org/10.1006/jcis.1993.1182
  28. Z. G. Cui, C. F. Cui, Y. Zhu, and B. P. Binks, Multiple phase inversion of emulsions stabilized by in situ surface activation of $CaCO_3$ nanoparticles via adsorption of fatty acids, Langmuir, 28, 314-320 (2012). https://doi.org/10.1021/la204021v
  29. B. P. Binks, Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  30. E. Rio, W. Drenckhan, A. Salonen, and D. Langevin, Unusually stable liquid foams, Adv. Colloid Interface Sci., 205, 74-86 (2014). https://doi.org/10.1016/j.cis.2013.10.023
  31. P. D. I. Fletcher, and B. L. Holt, Controlled silanization of silica nanoparticles to stabilize foams, climbing films, and liquid marbles, Langmuir, 27, 12869-12876 (2011). https://doi.org/10.1021/la2028725
  32. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, Ultrastable particle-stabilized foams, Angew. Chem. Int. Ed., 45, 3526-3530 (2006). https://doi.org/10.1002/anie.200503676
  33. B. P. Binks and T. S. Horozov, Aqueous foams stabilized solely by silica nanoparticles, Angew. Chem. Int. Ed., 117, 3788-3791 (2005). https://doi.org/10.1002/ange.200462470