Browse > Article
http://dx.doi.org/10.14478/ace.2019.1103

Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Propyltrimethoxysilane on the Stability of Emulsion and Foam  

Lee, YeJin (Department of Chemical and Biochemical Engineering, Dongguk university)
Park, KiHo (Department of Chemical and Biochemical Engineering, Dongguk university)
Lim, JongChoo (Department of Chemical and Biochemical Engineering, Dongguk university)
Publication Information
Applied Chemistry for Engineering / v.31, no.1, 2020 , pp. 49-56 More about this Journal
Abstract
In this study, surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane (PTMS) was conducted and the effect of surface hydrophobicity on the stability of foam and emulsion was studied in order to test the potential applicability as a foam stabilizer or an emulsifier. The surface modification of CaCO3 nanoparticles by PTMS was confirmed by FT-IR, DSC and TGA analysis. The atomic concentration of CaCO3 particle surface treated by PTMS has been also identified by using XRD and XPS analyses. Both floating tests and contact angle measurements were also performed to examine the effect of PTMS concentration on the surface modification of CaCO3 nanoparticles.
Keywords
$CaCO_3$ nanoparticles; Surface modification; Propyltrimethoxysilane (PTMS); Foam; Emulsion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Mihajlovic, A. Dakovic, Z. Sekulic, V. Jovanovic, and D. Vucinic, Influence of the modification method on the surface adsorption of stearic acid by natural calcite, J. Serb. Chem. Soc., 67, 1-19 (2009).   DOI
2 Z. Demjen, B. Pukanszky, and J. Nagy, Possible coupling reactions of functional silanes and polypropylene, Polymer, 40, 1763-1773 (1999).   DOI
3 E. Fekete and B. Pukanszky, Surface coverage and its determination: Role of acid-base interactions in the surface treatment of mineral fillers, J. Colloid Interface Sci., 194, 269-275 (1997).   DOI
4 G. S. Deshmukh, S. U. Pathak, D. R. Peshwe and J. D. Ekhe, Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites, Bull. Mater. Sci., 33, 277-284 (2010).   DOI
5 Y. Yin and X. Wang, Wet surface modification of light calcium carbonate powder by aluminate coupling agent, Adv. Mater. Res., 79-82, 1967-1970 (2009).   DOI
6 J. Liao, G. Du, X. Qiao, and D. Hao, Surface modification of diatomite by stearic acid and its effects on reinforcing for natural rubber/styrene butadiene rubber blend, J. Chin. Ceram. Soc., 39, 641-645 (2011).
7 K. Esumi and M. Ueno, Structure-performance Relationships in Surfactant, Marcel Dekker, New York (1997).
8 I. Grosse and K. Estel, Thin surfactant layers at the solid interface, Colloid Polym. Sci., 278, 1000-1006 (2000).   DOI
9 F. Tiberg, J. Brinck, and L. Grant, Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface, Curr. Opin. Colloid Interface Sci., 4, 411-419 (1999).   DOI
10 P. Somasundaran and L. Huang, Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces, Adv. Colloid Interface Sci., 88, 179-208 (2000).   DOI
11 N. Shimpi, A. Mali, D. P. Hansora, and S. Mishra, Synthesis and surface modification of calcium carbonate nanoparticles using ultrasound cavitation technique, Nanosci. Nanoeng., 3, 8-12 (2015).   DOI
12 E. M. Song, D. W. Kim, B. J. Kim, and J. C. Lim, Surface modification of $CaCO_3$ nanoparticles by alkylbenzene sulfonic acid surfactant, Colloids Surf. A, 461, 1-10 (2014).   DOI
13 E. M. Song, D. W. Kim, and J. C. Lim, Effect of adsorption of laureth sulfonic acid type anionic surfactant on the wetting property of $CaCO_3$ substrate, J. Ind. Eng. Chem., 28, 351-358 (2015).   DOI
14 D. W. Kim, J. Y. Lee, S. M. Lee, and J. C. Lim, Surface modification of calcium carbonate nanoparticles by fluorosurfactant, Colloids Surf. A, 536, 213-223 (2018).   DOI
15 J. Y. Lee, S. H. Jo, and J. C. Lim, Effect of surface modification of $CaCO_3$ nanoparticles by a silane coupling agent methyltrimethoxysilane on the stability of foam and emulsion, J. Ind. Eng. Chem., 74, 63-70 (2019).   DOI
16 Z. Y. Yang, Y. J. Tang, and J. H. Zhang, Surface modification of $CaCO_3$ nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex,, Chalcogenide Lett., 10, 131-141 (2013).
17 S. Mishra, A. Chatterjee, and R. Singh, Novel synthesis of nanocalcium carbonate ($CaCO_3$)/polystyrene(PS) core-shell nanoparticles by atomized microemulsion technique and its effect on properties of polypropylene(PP) composites, Polym. Adv. Technol., 22, 2571-2582 (2011).   DOI
18 E. Mavropoulos, A. M. Costa, L. T. Costa, C. A. Achete, A. M., J. M. Granjeiro, and A. M. Rossi, Adsorption and bioactivity studies of albumin onto hydroxyapatite surface, Colloids Surf. B, 83, 1-9 (2011).   DOI
19 S. Ek, A. Root, M. Peussa, and L. Niinisto, Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results, Thermochim. Acta, 379, 201-212 (2001).   DOI
20 S. Ghosh, S. K. Goswami, and L. J. Mathias, Surface modification of nano-silica with amides and imides for use in polyester nanocomposites, J. Mater. Chem. A, 1, 6073-6080 (2013).   DOI
21 B. P. Binks and S. O. Lumsdon, Influence of particle wettability on the type and stability of surfactant-free emulsions, Langmuir, 16, 8622-8631 (2000).   DOI
22 B. P. Binks, Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002).   DOI
23 B. P. Binks and J. A. Rodrigues, Double inversion of emulsions by using nanoparticles and a di-chain surfactant, Angew. Chem. Int. Ed., 46, 5389-5392 (2007).   DOI
24 D. E. Tambe and M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions: I. An experimental investigation, J. Colloid Interface Sci., 157, 244-253 (1993).   DOI
25 Z. G. Cui, C. F. Cui, Y. Zhu, and B. P. Binks, Multiple phase inversion of emulsions stabilized by in situ surface activation of $CaCO_3$ nanoparticles via adsorption of fatty acids, Langmuir, 28, 314-320 (2012).   DOI
26 E. Rio, W. Drenckhan, A. Salonen, and D. Langevin, Unusually stable liquid foams, Adv. Colloid Interface Sci., 205, 74-86 (2014).   DOI
27 P. D. I. Fletcher, and B. L. Holt, Controlled silanization of silica nanoparticles to stabilize foams, climbing films, and liquid marbles, Langmuir, 27, 12869-12876 (2011).   DOI
28 U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, Ultrastable particle-stabilized foams, Angew. Chem. Int. Ed., 45, 3526-3530 (2006).   DOI
29 Z. G. Cui, Y. Z Cui, C. F Cui, Z. Chen, and B. P. Binks, Aqueous foams stabilized by in situ surface activation of $CaCO_3$ nano particles via adsorption of anionic surfactant, Langmuir, 26, 12567-12574 (2010).   DOI
30 B. P. Binks and T. S. Horozov, Aqueous foams stabilized solely by silica nanoparticles, Angew. Chem. Int. Ed., 117, 3788-3791 (2005).   DOI
31 K. Premphet and P. Horanont, Phase structure of ternary polypropylene/elastomer/filler composites: Effect of elastomer polarity, Polymer, 41, 9283-9290 (2000).   DOI
32 C. Wang, Y. Sheng, H. Bala, X. Zhao, J. Zhao, X. Ma, and Z. Wang, A novel aqueous-phase route to synthesize hydrophobic $CaCO_3$ particles in situ, Mater. Sci. Eng. C, 27, 42-45 (2007).   DOI
33 M. A. Osman and U. W. Suter, Surface treatment of calcite with fatty acids: Structure and properties of the organic monolayer, Chem. Mater., 14, 4408-4415 (2002).   DOI