DOI QR코드

DOI QR Code

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam

실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향

  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Park, Ki Ho (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Lee, Jeong Min (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Shin, Hee Dong (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 임종주 (동국대학교 화학공학과) ;
  • 박기호 (동국대학교 화학공학과) ;
  • 이정민 (동국대학교 화학공학과) ;
  • 신희동 (동국대학교 화학공학과)
  • Received : 2022.06.27
  • Accepted : 2022.07.07
  • Published : 2022.08.10

Abstract

In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

본 연구에서는 실란 커플링제 옥틸트리메톡시실란(octyltrimethoxysilane, OTMS)을 사용하여 친수성 탄산칼슘(CaCO3) 나노입자의 표면을 개질하였으며, OTMS에 의한 CaCO3 나노입자의 표면 개질은 FT-IR, DSC, XRD XPS 및 TGA 분석을 통하여 확인하였다. 또한 부유 시험과 접촉각 측정을 통하여 OTMS 농도가 CaCO3 나노입자의 표면 소수성 변화에 미치는 영향에 관하여 살펴보았다. 부유 시험 결과에 따르면 1 wt% OTMS 농도 조건에서 측정한 active ratio 값이 97.0 ± 0.5%로서, OTMS가 CaCO3 나노입자 표면을 매우 효율적으로 소수화 개질하는 실란 커플링제임을 알 수 있었다. 또한 OTMS로 개질된 CaCO3 나노입자 1 wt%를 함유하는 수용액에 대한 기포 안정성 측정 결과, OTMS 농도가 1 wt%인 조건에서 가장 안정한 기포가 생성되며, 접촉각은 91.8 ± 0.7°임을 확인하였다. 또한 동일한 1 wt% OTMS 농도 조건에서 에멀젼 입자 크기가 가장 작은 안정한 상태의 에멀젼이 형성됨을 확인하였다. 이러한 결과들은 OTMS로 개질된 CaCO3 나노입자가 다양한 산업 응용 분야에서 기포 안정화제 및 에멀젼 유화제로서 적용이 가능함을 의미하는 것이다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발-소재부품패키지형 (과제번호 20011027, 반도체 디스플레이 공정용 불소계 계면활성제 제조기술 개발)의 지원을 받아 수행되었으며, 이에 감사드립니다.

References

  1. Z. G. Cui, Y. Z Cui, C. F Cui, Z. Chen, and B. P. Binks, Aqueous foams stabilized by in situ surface activation of CaCO3 nano particles via adsorption of anionic surfactant, Langmuir, 26, 12567-12574 (2010). https://doi.org/10.1021/la1016559
  2. K. Premphet and P. Horanont, Phase structure of ternary polypropylene/elastomer/filler composites: Effect of elastomer polarity Polymer, 41, 9283-9290 (2000). https://doi.org/10.1016/S0032-3861(00)00303-7
  3. C. Wang, Y. Sheng, H. Bala, X. Zhao, J. Zhao, X. Ma, and Z. Wang, A novel aqueous-phase route to synthesize hydrophobic CaCO3 particles in situ, Mater. Sci. Eng. C, 27, 42-45 (2007). https://doi.org/10.1016/j.msec.2006.01.003
  4. M. A. Osman and U. W. Suter, Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer, Chem. Mater., 14, 4408-4415 (2002). https://doi.org/10.1021/cm021222u
  5. S. Mihajlovic, A. Dakovic, Z. Sekulic, V. Jovanovic, and D. Vucinic, Influence of the modification method on the surface adsorption of stearic acid by natural calcite, J. Serb. Chem. Soc., 67, 1-19 (2009). https://doi.org/10.2298/JSC0201001C
  6. Z. Demjen, B. Pukanszky, and J. Nagy, Possible coupling reactions of functional silanes and polypropylene, Polymer, 40, 1763-1773 (1999). https://doi.org/10.1016/S0032-3861(98)00396-6
  7. E. Fekete and B. Pukanszky, Surface coverage and its determination: Role of acid-base interactions in the surface treatment of mineral fillers, J. Colloid Interface Sci., 194, 269-275 (1997). https://doi.org/10.1006/jcis.1997.5118
  8. G. S. Deshmukh, S. U. Pathak, D. R. Peshwe, and J. D. Ekhe, Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites, Bull. Mater. Sci., 33, 277-284 (2010). https://doi.org/10.1007/s12034-010-0043-7
  9. Y. Yin and X. Wang, Wet surface modification of light calcium carbonate powder by aluminate coupling agent, Adv. Mater. Res., 79-82, 1967-1970 (2009). https://doi.org/10.4028/www.scientific.net/AMR.79-82.1967
  10. J. Liao, G. Du, X. Qiao and D. Hao, Surface modification of diatomite by stearic acid and its effects on reinforcing for natural rubber/styrene butadiene rubber blend, J. Chin. Ceram. Soc., 39, 641-645 (2011).
  11. K. Esumi and M. Ueno, Structure-performance relationships in surfactant, Marcel Dekker, New York (1997).
  12. I. Grosse and K. Estel, Thin surfactant layers at the solid interface, Colloid Polym. Sci., 278, 1000-1006 (2000). https://doi.org/10.1007/s003960000364
  13. F. Tiberg, J. Brinck, and L. Grant, Adsorption and surface-induced self-assembly of surfactants at the solid-aqueous interface, Curr. Opin. Colloid Interface Sci., 4, 411-419 (1999). https://doi.org/10.1016/S1359-0294(00)00016-9
  14. P. Somasundaran and L. Huang, Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces, Adv. Colloid Interface Sci., 88, 179-208 (2000). https://doi.org/10.1016/S0001-8686(00)00044-0
  15. E. M. Song, D. W. Kim, B. J. Kim, and J. C. Lim, Surface modification of CaCO3 nanoparticles by alkylbenzene sulfonic acid surfactant, Colloids Surf. A, 461, 1-10 (2014). https://doi.org/10.1016/j.colsurfa.2014.07.020
  16. E. M. Song, D. W. Kim, and J. C. Lim, Effect of adsorption of laureth sulfonic acid type anionic surfactant on the wetting property of CaCO3 substrate, J. Ind. Eng. Chem., 28, 351-358 (2015). https://doi.org/10.1016/j.jiec.2015.03.015
  17. D. W. Kim, J. Y. Lee, S. M. Lee, and J. C. Lim, Surface modification of calcium carbonate nanoparticles by fluorosurfactant, Colloids Surf. A, 536, 213-223 (2018). https://doi.org/10.1016/j.colsurfa.2017.05.002
  18. J. Y. Lee, S. H. Jo, and J. C. Lim, Effect of surface modification of CaCO3 nanoparticles by a silane coupling agent methyltrimethoxysilane on the stability of foam and emulsion, J. Ind. Eng. Chem., 74, 63-70 (2019). https://doi.org/10.1016/j.jiec.2019.02.002
  19. Z. Y. Yang, Y. J. Tang, and J. H. Zhang, Surface modification of CaCO3 nanoparticles with silane coupling agent for improvement of the interfacial compatibility with styrene-butadiene rubber (SBR) latex, Chalcogenide Lett., 10, 131-141 (2013).
  20. N. Shimpi, A. Mali, D. P. Hansora, and S. Mishra, Synthesis and surface modification of calcium carbonate nanoparticles using ultrasound cavitation technique, Nanosci. Nanoeng., 3, 8-12 (2015). https://doi.org/10.13189/nn.2015.030102
  21. Y. J. Lee, K. H. Park, and J. C. Lim, Effect of surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane on the stability of emulsion and foam, Appl. Chem. Eng., 31, 49-56 (2020).
  22. S. Mishra, A. Chatterjee, and R. Singh, Novel synthesis of nano-calcium carbonate (CaCO3)/polystyrene(PS) core-shell nanoparticles by atomized microemulsion technique and its effect on properties of polypropylene(PP) composites, Polym. Adv. Technol., 22, 2571-2582 (2011). https://doi.org/10.1002/pat.1802
  23. E. Mavropoulos, A. M. Costa, L. T. Costa, C. A. Achete, A. Mello, J. M. Granjeiro, and A. M. Rossi, Adsorption and bioactivity studies of albumin onto hydroxyapatite surface, Colloids Surf. B, 83, 1-9 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.025
  24. S. Ghosh, S. K. Goswami, and L. J. Mathias, Surface modification of nano-silica with amides and imides for use in polyester nanocomposites, J. Mater. Chem. A, 1, 6073-6080 (2013). https://doi.org/10.1039/c3ta10381a
  25. S. Ek, A. Root, M. Peussa, and L. Niinisto, Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results, Thermochim. Acta, 379, 201-212 (2001). https://doi.org/10.1016/S0040-6031(01)00618-9
  26. B. P. Binks and S. O. Lumsdon, Influence of particle wettability on the type and stability of surfactant-free emulsions, Langmuir, 16, 8622-8631 (2000). https://doi.org/10.1021/la000189s
  27. B. P. Binks and J. A. Rodrigues, Double inversion of emulsions by using nanoparticles and a di-chain surfactant, Angew. Chem. Int. Ed., 46, 5389-5392 (2007). https://doi.org/10.1002/anie.200700880
  28. D. E. Tambe and M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions: I. An experimental investigation, J. Colloid Interface Sci., 157, 244-253 (1993). https://doi.org/10.1006/jcis.1993.1182
  29. Z. G. Cui,, C. F. Cui, Y. Zhu, and B. P. Binks, Multiple Phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of fatty acids, Langmuir, 28, 314-320 (2012). https://doi.org/10.1021/la204021v
  30. B. P. Binks, Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  31. E. Rio, W. Drenckhan, A. Salonen, and D. Langevin, Unusually stable liquid foams, Adv. Colloid Interface Sci., 205, 74-86 (2014). https://doi.org/10.1016/j.cis.2013.10.023
  32. P. D. I. Fletcher and B. L. Holt, Controlled silanization of silica nanoparticles to stabilize foams, climbing films, and liquid marbles, Langmuir, 27, 12869-12876 (2011). https://doi.org/10.1021/la2028725
  33. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, Ultrastable Particle-stabilized foams, Angew. Chem. Int. Ed., 45, 3526-3530 (2006). https://doi.org/10.1002/anie.200503676
  34. B. P. Binks and T. S. Horozov, Aqueous foams stabilized solely by silica nanoparticles, Angew. Chem. Int. Ed., 117, 3788-3791 (2005). https://doi.org/10.1002/ange.200462470