DOI QR코드

DOI QR Code

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation

페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향

  • Lee, Sangbin (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2022.02.14
  • Accepted : 2022.02.22
  • Published : 2022.03.01

Abstract

In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

본 연구에서는 오존의 용해효율 개선과 자가분해 촉진을 위해 나노기포와 초음파 캐비테이션을 동시에 적용한 오존 나노기포 공정을 조사하였다. 공정의 유기물 분해효율을 파악하기 위해 200mm × 200mm × 300mm 규모의 반응기를 제작하여 다양한 조건에서 페놀 분해 실험을 진행하였다. 나노기포의 사용은 60분 반응에서 페놀 분해 효율을 일반적인 폭기 방식에 비해 2.07배 증가시켰으며, 용존 오존의 최대 용해농도를 크게 증가시켜 오존의 용해효율 개선에 효과적이었다. 초음파 조사는 나노기포와 함께 사용될 때 페놀 분해 효율을 36% 증가시켰으며 오존의 자가 분해 촉진으로 용존 오존은 낮게 나타났다. 초음파 출력이 강할수록 페놀 분해 효율도 증가하였으며, 실험에서 사용한 28kHz, 132kHz, 580kHz 중 132kHz의 주파수에서 페놀의 분해 효율이 가장 높게 나타났다. 오존 나노공정은 기존 오존 공정과 같이 높은 pH에서 더 좋은 분해효율을 보였으나 중성에서도 60분 반응 후 페놀 100% 분해를 달성하여 pH에 의한 영향이 적은 것으로 나타났다. 이는 초음파에 의한 오존 자가분해 촉진에 의한 것으로 판단된다. 초음파 조사에 의한 기포 특성 변화를 확인하기 위해 Zetasizer를 이용하여 기포의 크기와 제타 전위 분석을 진행하였으며 초음파 조사가 기포의 평균 크기를 11% 감소시키고 기포 표면의 음전하를 강화하여 오존 나노기포의 물질전달과 수산화 라디칼 생성 효율에 긍정적인 효과를 끼치는 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 환경부 화학사고 대응 환경기술개발사업의 일환으로 수행되었으며(과제번호 2019001960005), 이에 감사드립니다.

References

  1. Anwer, H., Mahmood, A., Lee, J., Kim, K. H., Park, J. W. and Yip, A. C. (2019), Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges, Nano Research, Vol. 12, No. 5, pp. 955~972. https://doi.org/10.1007/s12274-019-2287-0
  2. Attard, P. (2014), The stability of nanobubbles, The European Physical Journal Special Topics, Vol. 223, No. 5, pp. 893~914. https://doi.org/10.1140/epjst/e2013-01817-0
  3. Chand, R., Ince, N. H., Gogate, P. R. and Bremner, D. H. (2009), Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Separation and Purification Technology, Vol. 67, No. 1, pp. 103-109. https://doi.org/10.1016/j.seppur.2009.03.035
  4. Chu, W. and Ching, M. H. (2003), Modeling the ozonation of 2, 4-dichlorophoxyacetic acid through a kinetic approach, Water Research, Vol. 37, No.1, pp. 39~46. https://doi.org/10.1016/S0043-1354(02)00250-6
  5. Dong, J., Yao, J., Tao, J., Shi, X. and Wei, F. (2022), Degradation of Methyl Orange by ozone microbubble process with packing in the bubble column reactor, Environmental Technology, (justaccepted), pp. 1~28.
  6. John, A., Brookes, A., Carra, I., Jefferson, B. and Jarvis, P. (2020), Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application, Critical Reviews in Environmental Science and Technology, pp. 1~43.
  7. Kidak, R. and Dogan, S. (2018), Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water, Ultrasonics sonochemistry, Vol. 40, pp. 131~139. https://doi.org/10.1016/j.ultsonch.2017.01.033
  8. Krishnan, J. S., Dwivedi, P. and Moholkar, V. S. (2006), Numerical investigation into the chemistry induced by hydrodynamic cavitation, Industrial & engineering chemistry research, Vol. 45, No. 4, pp. 1493~1504. https://doi.org/10.1021/ie050839t
  9. Lee, H. U., Han, J. J., Yoon, Y. M., Park, J. W., Lee, J. Y. and Her, N. G. (2014), A Study on the Synergistic Effects of Hybrid System Simultaneously Irradiating the UV and US, Journal of the Korean Geo-Environmental Society, Vol. 15, No. 7, pp. 5~11
  10. Li, M., Ma, X., Eisener, J., Pfeiffer, P., Ohl, C. D. and Sun, C. (2021), How bulk nanobubbles are stable over a wide range of temperatures, Journal of Colloid and Interface Science, Vol. 596, 184~198. https://doi.org/10.1016/j.jcis.2021.03.064
  11. Lim, S., Shi, J. L., von Gunten, U. and McCurry, D. L. (2022), Ozonation of Organic Compounds in Water and Wastewater: A Critical Review, Water Research, 118053.
  12. Liu, Y., Wang, S., Shi, L., Lu, W. and Li, P. (2020), Enhanced degradation of atrazine by microbubble ozonation. Environmental Science: Water Research & Technology, Vol. 6, No. 6, pp. 1681~1687. https://doi.org/10.1039/d0ew00227e
  13. Liu, Z., Demeestere, K. and Van Hulle, S. (2021), Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: a review, Journal of Environmental Chemical Engineering, Vol. 9 No. 4, 105599. https://doi.org/10.1016/j.jece.2021.105599
  14. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., Li, L., Fu, Y., Li, B., Zhang, M., Qin, L., Liu, S. and Yang, L. (2021), Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere, Vol. 275, 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  15. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E. and Hubner, U. (2018), Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review, Water research, Vol. 139, pp. 118~131. https://doi.org/10.1016/j.watres.2018.03.042
  16. Nirmalkar, N., Pacek, A. W. and Barigou, M. (2018), On the existence and stability of bulk nanobubbles, Langmuir, Vol. 34, No. 37, pp. 10964~10973. https://doi.org/10.1021/acs.langmuir.8b01163
  17. Pirsaheb, M. and Moradi, N. (2020), Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway-a systematic review, RSC Advances, Vol. 10, No. 13, pp. 7396~7423. https://doi.org/10.1039/c9ra11025a
  18. Rekhate, C. V. and Srivastava, J. K. (2020), Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-A review, Chemical Engineering Journal Advances, Vol. 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031
  19. Safarzadeh-Amiri, A. (2001), O3/H2O2 treatment of methyl-tertbutyl ether (MTBE) in contaminated waters, Water Research, Vol. 35, No. 15, pp. 3706~3714. https://doi.org/10.1016/S0043-1354(01)00090-2
  20. Takahashi, M. (2005), ζ potential of microbubbles in aqueous solutions: electrical properties of the gas- water interface, The Journal of Physical Chemistry B, Vol. 109, No. 46, pp. 21858~21864. https://doi.org/10.1021/jp0445270
  21. Tao, P., Yang, C., Wang, H., Zhao, Y., Zhang, X., Shao, M. and Sun, T. (2021), Synergistic effects of ultrasonic-assisted ozonation on the formation of hydrogen peroxide, Journal of Environmental Chemical Engineering, Vol. 9 No. 1, 104905. https://doi.org/10.1016/j.jece.2020.104905
  22. Wan, X., Zhang, L., Sun, Z., Yu, W. and Xie, H. (2020), Treatment of high concentration acid plasticizer wastewater by ozone microbubble oxidation, Water, Air, & Soil Pollution, Vol. 231, No. 7, pp. 1~12. https://doi.org/10.1007/s11270-019-4368-6
  23. Wang, J., Wang, Z., Vieira, C. L., Wolfson, J. M., Pingtian, G. and Huang, S. (2019), Review on the treatment of organic pollutants in water by ultrasonic technology, Ultrasonics sonochemistry, Vol. 55, pp. 273~278. https://doi.org/10.1016/j.ultsonch.2019.01.017
  24. Weavers, L. K., Ling, F. H. and Hoffmann, M. R. (1998), Aromatic compound degradation in water using a combination of sonolysis and ozonolysis, Environmental Science & Technology, Vol. 32, No. 18, pp. 2727~2733. https://doi.org/10.1021/es970675a
  25. Xiong, X., Wang, B., Zhu, W., Tian, K. and Zhang, H. (2019), A review on ultrasonic catalytic microbubbles ozonation processes: properties, hydroxyl radicals generation pathway and potential in application, Catalysts, Vol. 9, No. 1, 10. https://doi.org/10.3390/catal9010010
  26. Zhang, H., Guo, Z. and Zhang, X. (2020), Surface enrichment of ions leads to the stability of bulk nanobubbles, Soft Matter, Vol. 16, No. 23, pp. 5470~5477. https://doi.org/10.1039/d0sm00116c