• Title/Summary/Keyword: 길항세균

Search Result 137, Processing Time 0.024 seconds

Antifungal Activity and Exoenzyme Production of Several Bacteria Antagonistic to Trichoderma spp. Causing Green Mold Disease (버섯 푸른곰팡이균에 대한 길항세균의 항균활성과 세포외 분비효소 생성능)

  • Hyun, Soung-Hee;Min, Bong-Hee
    • The Korean Journal of Mycology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2002
  • Trichoderma spp. are the aggressive causal agents for green mold disease on oyster mushroom (Pleurotus spp.) cultivation. Antifungal bacteria (KATB 99121, KATB 99122 and KATB 99123 strains) were isolated from the compost for Pleurotus ostreatus. Among these bacterial strains, KATB 99121 strain showed an excellent inhibitory activity to the pathogens for green molds such as T. harzianum, T. viride and T. hamatum and an animal pathogen, Candida albicans, but did not affect on the culture of Pleurotus ostreatus (2209, Chunchu 2 and Wonhyung strains). KATB 99121 strain secreted amylolytic, proteolytic and cellulolytic exoenzymes. KATB 99122 and KATB 99123 strains excreted amylolytic, proteolytic, cellulolytic, lipolytic exoenzymes and showed ${\beta}$-glucosidase activity. Further studies will be conducted on the development of microbial fungicides using the antagonistic bacteria for the control of green mold disease on Pleurotus spp.

Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria (길항세균을 이용한 상추 균핵병의 생물학적 방제)

  • Chon, Bong-Goan;Park, Suji;Kim, Jin-Won
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.12-20
    • /
    • 2013
  • To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0-100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6) and B. cereus (C210) showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

Isolation and Identification of Antagonistic Bacterium Active against Sclerotinia sclerotioum Causing Sclerotinia Rot on Crisphead Lettuce (결구상추 균핵병균(Sclerotinia sclerotioum)에 대한 길항세균의 분리 및 동정)

  • Kim, Han-Woo;Lee, Kwang-Youll;Baek, Jung-Woo;Kim, Hyun-Ju;Park, Jong-Young;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.331-336
    • /
    • 2004
  • The fungus genus Sclerotinia contains a number of important plant pathogens. Vegetable growers in our country are probably most familiar with Sclerotinia sclerotiorum, the causes of sclerotinia rot on crisphead lettuce. S. sclerotiorum has a wide host range which can include lettuce as well as crops such as broccoli, cabbage, carrots, celery, beans, peppers, potatoes, stocks, and tomato. Some fungicides, including benomyl, are effective in some crops, but not all. So, we isolated a antagonistic bacteria that are active on sclerotinia rot caused by S. sclerotiorum and that can be used to control it. About 702 strains had been isolated from soil around plant roots in the field. Ten strains showed strong antifungal activity against S. sclerotiorum. In pot test for antagonistic activity, A-7 strain showed high control value against the pathogen when compared with others. The strain was, therefore, selected as a biocontrol candidate against sclerotinia rot and its biochemical properties and 16S rDNA sequence was analyzed. The A-7 strain was highly related to Bacillus subtilis and B. amyloliquefaciens. To confirm precise identification, we had performed gyr A gene sequences analysis. Its sequence had 96% similarity with B. amyloliquefaciens. Consequently, the isolate was identified as B. amyloliquefaciens A-7.

Selection and Mechanisms of Indigenous Antagonistic Microorganisms against Sheath Rot and Dry Rot Disease of Garlic (마늘 잎집썩음병과 마른썩음병을 길항하는 토착길항미생물의 선발 및 기작)

  • Jeong, Hee-Young;Lim, Jong-Hui;Kim, Byung-Keuk;Lee, Jung-Jong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.295-301
    • /
    • 2010
  • Sheath rot and dry rot disease caused by Pseudomonas marginalis and Fusarium oxysporum were serious problems in garlic farmland. In this study, total of 160 indigenous antagonistic bacteria were isolated from 16 farmlands in Yeongcheon, Korea. Among these, 15 strains were able to inhibited P. marginalis and F. oxysporum. The 16s rDNA genes of the selected 15 strains were amplified and sequenced. The strains has strong antagonistic ability against garlic pathogens was achieved Bacillus subtilis YC82, B. vallismortis YC84, B. amyloliquefaciens YC240. The selected 3 strains tested for investigation of antifungal mechanisms further analyses; 3 strains of these validated for production of siderophore, ${\beta}$-glucanase and chitinase using CAS (chrome azurol S) blue agar, CMC-congo red agar and DNS method. The 3 strains were able to utilized insoluble phosphate as dertermined by vanado-molybdate method. The 3 strains verified for production of auxin and gibberellic acid using Salkowski test and holdbrook test. Also, 3 strains showed stimulation germination, stem growth promoting activity on the in vivo test. The 3 strains were able to effectively suppress P. marginalis and F. oxysporum causing sheath rot and dry rot diseases on the in vivo pot test.

Selection and Characterization of Antagonistic Microorganisms for Biological Control of Acidovorax citrulli Causing Fruit Rot in Watermelon (수박에 과실썩음병을 유발하는 Acidovorax citrulli의 생물학적 방제를 위한 길항 미생물 선발과 특성 검정)

  • Kim, Ki Young;Park, Hyo Bin;Adhikari, Mahesh;Kim, Hyun Seung;Byeon, Eun Jeong;Lee, In Kyu;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.69-81
    • /
    • 2022
  • This study was performed to screen the efficacy of antagonistic bacterial isolates from various sources against the bacterial fruit blotch (BFB) causing pathogen (Acidovorax citrulli) in cucurbit crops. In addition, plant growth promoting traits of these antagonistic bacterial isolates were characterized. Two thousand seven hundred ninety-four microorganisms were isolated from the collected samples. Molecular identification revealed two A. citrulli out of 2,794 isolates. In vitro antagonistic results showed that, among the 28 antagonistic bacterial isolates, 24 and 14 bacterial isolates exhibited antagonism against HPP-3-3B and HPP-9-4B, respectively. Antagonistic and growth promotion characterization of the antagonistic bacterial isolates were further studied. Results suggested that, 4 antagonistic bacteria commonly showed both antagonism and growth promotion phenotypes. Moreover, 3 isolates possessed growth promoting activities. Overall results from this study suggests that BFB causing bacterial pathogen (A. citrulli) was suppressed in in vitro antagonism assay by antagonistic bacterial isolates. Furthermore, these antagonistic bacterial isolates possessed growth promotion and antagonistic enzyme production ability. Therefore, data from this study can provide useful basic data for the in vivo experiments which ultimately helps to develop the eco-friendly agricultural materials to control fruit rot disease in cucurbit crops in near future.

Antagonistic Effects of the Bacterium Alcaligenes sp. HC12 on Browning Disease Caused by Pseudomonas agarici (버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 Alcaligenes sp. HC12의 항균활성)

  • Lee, Chan-Jung;Moon, Ji-Won;Cheong, Jong-Chun;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.171-175
    • /
    • 2016
  • A gram-negative bacterium was isolated from spent substrates of Agaricus bisporus and showed significant antagonistic activity against Pseudomonas agarici. The bacterium was identified as Alcaligenes sp. based on cultural, biochemical, physiological characteristics and a 16S rRNA sequence analysis. The isolate is saprophytic, but not parasitic or pathogenic on cultivated mushroom, whereas it showed strong inhibitory effects against P. agarici cells in vitro. The control efficacy of Alcaligenes sp. HC12 against brown blotch of P. agarici was up to 63% on Agaricus bisporus. The suppressive bacterium may be useful for the development of biocontrol systems.

Antagonistic Effect of Bacillus safensis HC42 on Brown Blotch Mushroom Disease Caused by Pseudomonas agarici (버섯 세균성회색무늬병균 (Pseudomonas agarici) 에 대한 항균활성을 가지는 Bacillus safensis HC42)

  • Lee, Chan-Jung;Lee, Eun-Ji;Park, Hae-Sung;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.17 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • A gram-positive bacterium was isolated from the spent substrate of Agaricus bisporus that showed a marked antagonistic activity against Pseudomonas agarici. It was identified as Bacillus safensis HC42 based on its cultural, biochemical, and physiological characteristics, and 16S rRNA sequence. B. safensis HC42 was saprophytic, but not parasitic or pathogenic, in cultivated mushrooms and showed strong inhibition of P. agarici in vitro. Moreover, it showed a control efficacy of 66 % against browning disease caused by P. agarici in Agaricus bisporus. Therefore, B. safensis HC42 may be useful in the future for the development of a biocontrol system.

Isolation, Identification and Antagonisms of Rhizospheric Antagonists to Cucumber Wilt Pathogen, Fusarium oxysporum f. sp. cucumerinum Owen (오이 덩굴쪼김병균에 대한 오이 근권길항미생물의 분리, 동정 및 길항작용)

  • Jee Hyeong Jin;Kim Hee Kyu
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.187-197
    • /
    • 1987
  • Bacteria and fungi antagonistic to Fusarium oxysporum f. sp. cucumerinum Owen were effectively isolated with each of modified Triple Layer Agar (TLA) technique from rhizosphere soil where cucumber had been grown healthily in plastic film house. Three predominant bacterial isolates selected were identified as Pseudomonas fluorescens, and P. putida, Serratia sp. and three fungal isolates were Gliocladium sp. Trichoderma harzianum, and T. viride. Antagonistic bacteria inhibited $26-45\%$ of germination and $41-56\%$ of germ tube elongation of microconidia of F. oxysporum f. sp. cucumerinum on Water Agar (WA). P. fluorescens was the strongest inhibitor. Several my co parasitisms were observed on dual culture of WA between antagonistic fungi and F. oxysporum f. sp. cucumerinum such as coiling, penetration, overgrowing, and lysis. Mycelial lysis of the pathogen was the most severe at pH 4.6, followed by 3.6, 5.6 and 6.6 of the medium in decreasing order. At pH 6.6, mycelia of the pathogen were not conspicuously damaged, however, the antagonistic fungi formed abundant chlamydospores especially Gliocladium sp. T. harzianum revealed the most excellent antagonism in vitro.

  • PDF

Isolation and Utilization of Antagonistic Pseudomonas fluorescens from Soils for the Protection of Soybean Sprouts Rot (콩나물 부패병 방제를 위해 토양으로부터 분리한 길항균 Pseudomonas fluorescens의 이용)

  • Kim, Jin-Ho;Joo, Gil-Jae;Choi, Yong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2001
  • Thirty-three bacterial and fungal strains were isolated from the rotten soybeans and soybean sprouts to isolate pathogenic microorganisms which cause soybean sprouts rot during soybean sprouts cultivation. In pathogenicity tests of the isolates on soybean sprouts, two isolates(K-17 and K-28) caused soybean sprouts rot and were identified as Erwinia carotovora and Fusarium sp., respectively. To isolate antagonists aganist K-17 and K-28 pathogens, bacteria were isolated from various soybean-cultivated soils and screened by the inhibition zone method. A bacterial isolate(J-232) which inhibited growth of both pathogens was identified as Pseudomonas fluorescens and further examined. The culture filtrate of P. fluorescens J-232 (dilution rate of 500 times) inhibited the growth of Erwinia carotovora K-17 and Fusarium sp. K-28 both on potato dextrose agar medium and on soybean sprouts cultivated in vessel. The development of soybean sprouts rots was observed during cultivation by inoculation of soybean seeds with culture filtrate of both pathogens. The combined inoculation of soybean seeds with culture filtrate of antagonistic bacterium and that of pathogens prevented soybean sprouts rot, and the growth of soybean sprouts was similar to that of control. The soybean sprouts inoculated with antagonists culture filtrate alone did not develop soybean sprouts rot, and the growth of the seedlings was shown to be slightly promoted as compared with that of control.

  • PDF

A Study on the Antagonistic Activity of Enterobacteria to Lactic Acid Bacteria Accuring Kimchi Fermentation (장내세균류(腸內細菌類)의 김치유산균(乳酸菌)에 대(對)한 길항작용(拮抗作用))

  • Yoon, Suk-Kyung
    • Journal of Nutrition and Health
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 1979
  • This work was carried out to detect the enterobacterial contamination in summer kimchies and their antagonis tic activity with lactic acid bacteria during kimchi fermentation. And obtained results were as in the followings. 1) Severe cases of enterobactrial contamination were found in every kimchi material and in the first step of summer kimchi fermention. 2) Some pathogenic or food poisonous strain of Salmonellaspp. was identified among the contaminated enterobacteria. 3) Pathogenic strains of Salmonella typhi, Shigella flexneri or E. coli which were added to kimchi fermention, were contineously detected for 10days at the temperature of $10^{\circ}C$. Food poisonous strain of Vibrio parahemolyticus was more resistant than the above stains in the kimchi fermentation. 4) And in summer condition(over $30^{\circ}C$) the added pathogenic strains of enterobacteria were also detected for 2 day at pH of 4.5 kimchi fermentation. 5) The antagonistic activity of enterobacteria in lactate buffer solution of pH 4.8 was more stron than that in the kimchi fermentation at $30^{\circ}C$ of summer condition. 6) According to the above results, sanitary washing processes for every kind of kimchi material (vegitables) are required to reduce the enterobacterial concentration which is usually contaminated. And some fermentation period is also required to avoid the possible kimchi food poisoning.

  • PDF