DOI QR코드

DOI QR Code

Antagonistic Effects of the Bacterium Alcaligenes sp. HC12 on Browning Disease Caused by Pseudomonas agarici

버섯 세균성회색무늬병균(Pseudomonas agarici)에 대한 Alcaligenes sp. HC12의 항균활성

  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Moon, Ji-Won (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cheong, Jong-Chun (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 문지원 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 정종천 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 공원식 (농촌진흥청 국립원예특작과학원 버섯과)
  • Received : 2016.08.02
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

A gram-negative bacterium was isolated from spent substrates of Agaricus bisporus and showed significant antagonistic activity against Pseudomonas agarici. The bacterium was identified as Alcaligenes sp. based on cultural, biochemical, physiological characteristics and a 16S rRNA sequence analysis. The isolate is saprophytic, but not parasitic or pathogenic on cultivated mushroom, whereas it showed strong inhibitory effects against P. agarici cells in vitro. The control efficacy of Alcaligenes sp. HC12 against brown blotch of P. agarici was up to 63% on Agaricus bisporus. The suppressive bacterium may be useful for the development of biocontrol systems.

Pseudomonas agarici에 의해 발생하는 세균성회색무늬병은 양송이 재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균성회색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 양송이 배지에서 세균성회색무늬병 병원균을 강하게 억제하는 길항세균 HC12를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC12균주는 Alcaligenes sp.로 동정되었다. Alcaligenes sp. HC12를 양송이에 처리한 결과 63%의 방제효과를 보였다. 따라서 Alcaligenes sp. HC12가 양송이버섯 세균성회색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.

Keywords

References

  1. Fermor TR. Bacterial diseases of edible mushrooms and their control. In: Wuest PJ, Royse DJ, Beelman RB, editors. Cultivating edible fungi. Amsterdam: Elsevier; 1986. p. 361-70.
  2. Gill WM. Bacterial disease of Agaricus mushrooms. Rep Tottori Mycol Inst 1995;33:34-55.
  3. Tolaas AG. A bacterial disease of cultivated mushrooms. Phytopathology 1915;5:51-4.
  4. Paine SG. Studies in bacteriosis II: a brown blotch disease of cultivated mushrooms. Ann Appl Biol 1919;5:206-19. https://doi.org/10.1111/j.1744-7348.1919.tb05291.x
  5. Tsuneda A, Suyama K, Muradami S, Ohira I. Occurrence of Pseudomonas tolaasii on fruiting bodies of Lentinula edodes formed on Quercus logs. Mycoscience 1995;36:283-8. https://doi.org/10.1007/BF02268603
  6. Kim JW, Kim KH, Kang HJ. Studies on the pathogenic Pseudomonas causing bacterial disease of cultivated mushroom in Korea: 1. on the causal organisms of the rots of Agaricus bisporus, Pleurotus ostreatus and Lentinus edodes. Korean J Plant Pathol 1994;10:197-210.
  7. Rainey PB, Brodey CL, Johnstone K. Biology of Pseudomonas tolaasii, cause of brown blotch disease of cultivated mushroom. In: Andrews JH, Tommerup I, editors. Advances in plant pathology. Vol. 8. New York: Academic Press. 1992. p. 95-117.
  8. Wells JM, Sapers GM, Fett WF, Butterfield JE, Jones JB, Bouzar H, Miller FC. Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. 'reactans', and P. 'gingeri'. Phytopathology 1996;86:1098-104. https://doi.org/10.1094/Phyto-86-1098
  9. Goor M, Vantomme R, Swings J, Gillis M, Kersters K, de Ley J. Phenotypic and genotypic diversity of Pseudomonas tolaasii and white line reacting organisms isolated from cultivated mushrooms. J Gen Microbiol 1986;132:2249-64.
  10. Wong WC, Fletcher JT, Unsworth BA, Preece TF. A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J Appl Bacteriol 1982;52:43-8. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
  11. Cutri SS, Macauley BJ, Roberts WP. Characteristics of pathogenic non-fluorescent (smooth) and non-pathogenic fluorescent (rough) forms of Pseudomonas tolaasii and Pseudomonas 'gingeri'. J Appl Bacteriol 1984;57:291-8. https://doi.org/10.1111/j.1365-2672.1984.tb01393.x
  12. Geels FP, Hesen LP, Van Griensven LJ. Brown discoloration of mushrooms caused by Pseudomonas agarici. J Phytopathol 1994;140:249-59. https://doi.org/10.1111/j.1439-0434.1994.tb04814.x
  13. Bessette AE, Kerrigan RW, Jordan DC. Yellow blotch of Pleurotus ostreatus. Appl Environ Microbiol 1985;50:1535-7.
  14. Lee HI, Cha JS. Cloning of a DNA fragment specific to Pseudomonas tolaasii causing bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). Korean J Plant Pathol 1998;14:177-83.
  15. Scherwinski K, Grosch R, Berg G. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 2008;64:106-16. https://doi.org/10.1111/j.1574-6941.2007.00421.x
  16. Nair NG, Fahy PC. Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J Appl Bacteriol 1972;35:439-42. https://doi.org/10.1111/j.1365-2672.1972.tb03720.x
  17. Olivier JM, Guillaumes J, Martin D. Study of a bacterial disease of mushroom caps. In: Proceedings of 4th International Conference Plant Pathogenic Bacteria; 1978 Aug 27-Sep 2; Angers, France. Paris: INRA; 1978. p. 903-16.
  18. Liao YM, Tu CC, Jeng JJ. Control of bacterial blotch of mushroom. Taiwan Mushrooms 1980;4:34-41.
  19. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH. Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 1991;113:2621-7. https://doi.org/10.1021/ja00007a040
  20. Lee CJ, Yoo YM, Han JY, Jhune CS, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS. Isolation of the bacterium Pseudomonas sp. HC1 effective in inactivation of tolaasin produced by Pseudomonas tolaasii. Kor J Mycol 2013;41:248-54. https://doi.org/10.4489/KJM.2013.41.4.248
  21. Lee CJ, Yoo YM, Han JY, Jhune CS, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS. Isolation of the bacterium Pseudomonas azotoformans HC5 effective in antagonistic of brown blotch disease caused by Pseudomonas tolaasii. Kor J Mycol 2014;42: 219-24. https://doi.org/10.4489/KJM.2014.42.3.219
  22. Park BS, Cho NC, Chun UH. Identification of Pseudomonas fluorescens antagonistic to Pseudomonas tolaasii and its cultivation. Korean J Biotechnol Bioeng 1992;7:296-301.
  23. Kim IG, Someya T, Whang KS. The observation and a quantitative evaluation of viable but non-culturable bacteria in potable groundwater using epifluorescence microscopy. Korean J Microbiol 2002;38:180-5.
  24. Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80. https://doi.org/10.1093/nar/22.22.4673
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor. Mammalian Protein Metabolism. Vol. III. New York: Academic Press; 1969. p. 21-132.
  26. Stainer RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966;43:159-271. https://doi.org/10.1099/00221287-43-2-159
  27. Palleroni NJ. Genus I: Pseudomonas migula 1894. In: Krieg NR, Holt JG, editors. Bergey's manual of systematic bacteriology. Vol. I. Baltimore: Williams and Wilkins; 1984. p. 141-99.
  28. Kim MH, Park SW, Kim YK. Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J Korean Soc Appl Biol Chem 2011;54:99-104.